1
|
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers (Basel) 2024; 16:2478. [PMID: 39001539 PMCID: PMC11240358 DOI: 10.3390/cancers16132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, India
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Mohanta A, Kumar RR, Singh RK, Mandal S, Yadav R, Khatkar R, Sharma U, Uttam V, Rana MK, Rana AP, Jain A. Emerging role of miR-320a in lung cancer: a comprehensive review. Biomark Med 2023; 17:767-781. [PMID: 38095986 DOI: 10.2217/bmm-2023-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
A specialized biomarker(s) for lung cancer is imperative owing to its high mortality. Continuing our earlier work demonstrating the role of miR-320a as a tumor suppressor, here we discuss the most recent updates on miR-320a in lung cancer pathogenesis. We found that miR-320a modulates levels of diverse cancer-associated molecules and signaling pathways, and is also involved in modulating the immune microenvironment of lung cancer during its pathogenesis. We also discuss how miR-320a encapsulated in exosomes inhibits invasive phenotypes of lung cancer. Therefore, based on the multimodal role of miR-320a in lung cancer development and progression, we believe that miR-320a may be utilized as a potential diagnostic/prognostic marker and therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Adrija Mohanta
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rajiv R Kumar
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rahul K Singh
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Surojit Mandal
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ritu Yadav
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rinku Khatkar
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Uttam Sharma
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vivek Uttam
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Manjit K Rana
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Amrit Ps Rana
- Department of General Surgery, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Aklank Jain
- Non-Coding RNA & Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| |
Collapse
|
3
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|
4
|
Ajaykumar A, Yang JJ. Integrative Comparison of Burrows-Wheeler Transform-Based Mapping Algorithm with de Bruijn Graph for Identification of Lung/Liver Cancer-Specific Gene. J Microbiol Biotechnol 2022; 32:149-159. [PMID: 34949753 PMCID: PMC9628837 DOI: 10.4014/jmb.2110.10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022]
Abstract
Cancers of the lung and liver are the top 10 leading causes of cancer death worldwide. Thus, it is essential to identify the genes specifically expressed in these two cancer types to develop new therapeutics. Although many messenger RNA (mRNA) sequencing data related to these cancer cells are available due to the advancement of next-generation sequencing (NGS) technologies, optimized data processing methods need to be developed to identify the novel cancer-specific genes. Here, we conducted an analytical comparison between Bowtie2, a Burrows-Wheeler transform-based alignment tool, and Kallisto, which adopts pseudo alignment based on a transcriptome de Bruijn graph using mRNA sequencing data on normal cells and lung/liver cancer tissues. Before using cancer data, simulated mRNA sequencing reads were generated, and the high Transcripts Per Million (TPM) values were compared. mRNA sequencing reads data on lung/liver cancer cells were also extracted and quantified. While Kallisto could directly give the output in TPM values, Bowtie2 provided the counts. Thus, TPM values were calculated by processing the Sequence Alignment Map (SAM) file in R using package Rsubread and subsequently in python. The analysis of the simulated sequencing data revealed that Kallisto could detect more transcripts and had a higher overlap over Bowtie2. The evaluation of these two data processing methods using the known lung cancer biomarkers concludes that in standard settings without any dedicated quality control, Kallisto is more effective at producing faster and more accurate results than Bowtie2. Such conclusions were also drawn and confirmed with the known biomarkers specific to liver cancer.
Collapse
Affiliation(s)
- Atul Ajaykumar
- Department of Information, Communication and Electronics Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jung Jin Yang
- Department of Computer Science Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
5
|
Lu Y, Huang J, Li F, Wang Y, Ding M, Zhang J, Yin H, Zhang R, Ren X. EGFR-specific single-chain variable fragment antibody-conjugated Fe 3O 4/Au nanoparticles as an active MRI contrast agent for NSCLC. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:581-591. [PMID: 33624188 PMCID: PMC7902179 DOI: 10.1007/s10334-021-00916-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is closely associated with a poor prognosis in non-small cell lung cancer (NSCLC), thus making it a promising biomarker for NSCLC diagnosis. Here, we conjugated a single-chain antibody (scFv) targeting EGFR with Fe3O4/Au nanoparticles to form an EGFR-specific molecular MRI bioprobe (scFv@Fe3O4/Au) to better detect EGFR-positive NSCLC tumors in vivo. In vitro, we demonstrated that the EGFR-specific scFv could specifically deliver Fe3O4/Au to EGFR-positive NSCLC cells. In vivo experiments showed that the accumulation of scFv@Fe3O4/Au in tumor tissue was detectable by magnetic resonance imaging (MRI) at the indicated time points after systemic injection. The T2W signal-to-noise ratio (SNR) of EGFR-positive SPC-A1 tumors was significantly decreased after scFv@Fe3O4/Au injection, which was not observed in the tumors of mice injected with BSA@Fe3O4/Au. Furthermore, transmission electron microscopy (TEM) analysis showed the specific localization of scFv@Fe3O4/Au in the SPC-A1 tumor cell cytoplasm. Collectively, the results of our study demonstrated that scFv@Fe3O4/Au might be a useful probe for the noninvasive diagnosis of EGFP-positive NSCLC.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Fakai Li
- Department of Respiratory and Critical Care Medicine, Jinhua Guangfu Hospital, Jinhua, Zhejiang, China
| | - Yuan Wang
- The Second Section of Internal Medicine, Xi'an Thoracic Hospital, Xi'an, Shannxi, China
| | - Ming Ding
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Jian Zhang
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Air Force Medical University of PLA (the Fourth Military Medical University), Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Air Force Medical University of PLA (the Fourth Military Medical University), Xi'an, Shannxi, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University of PLA (the Fourth Military Medical University), Xi'an, Shannxi, China.
| | - Xinling Ren
- Department of Respiratory, Shenzhen University General Hospital, Shenzhen University, Xueyuan Ave. 1098, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Jazieh AR, Bounedjar A, Al Dayel F, Fahem S, Tfayli A, Rasul K, Jaafar H, Jaloudi M, Al Fayea T, Almaghrabi HQ, Bamefleh H, AlKattan K, Larbaoui B, Filalli T, Al Mistiri M, Alhusaini H. Patterns of diagnostic procedures for lung cancer pathology in the Middle East and North Africa. J Thorac Dis 2019; 11:5162-5168. [PMID: 32030233 DOI: 10.21037/jtd.2019.12.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Accurate pathological diagnosis is the first critical step in the management of lung cancer. This step is important to determine the histological subtype of the cancer and to identify any actionable targets. Our study aimed at evaluating the patterns of procedures used to obtain pathological diagnosis of lung cancer in the Middle East and North Africa (MENA) Region. Methods Data of consecutive patients with the diagnosis of non-small cell lung cancer (NSCLC) were collected from participating centers from different countries in the MENA Region. Methods of obtaining tissue diagnosis and workup were analyzed to determine the practice patterns of obtaining tissue diagnosis of lung cancer. Results A total of 566 patients were recruited from 10 centers in 5 countries including Saudi Arabia, United Arab Emirates (UAE), Qatar, Lebanon and Algeria. Majority of patients were males (78.1%) with a median age of 61 years (range, 22-89 years). Obtaining tissue diagnosis was successful in the first attempt in 72.3% of patients, while 16.4% and 6.3% of patients required 2nd and 3rd attempt, respectively. The success in first attempt was as follows: image guided biopsy (91%), surgical biopsy (88%), endobronchial biopsy (79%) and cytology (30%). The success in the second attempt was as follows; surgical biopsy (100%), image guided biopsy (95%), endobronchial biopsy (65%), cytology (25%). Conclusions More than quarter of the patients required repeated biopsy in the MENA Region. Image guided biopsy has the highest initial yield. Implementing clear process and multidisciplinary guidelines about the selection of diagnostic procedures is needed.
Collapse
Affiliation(s)
- Abdul Rahman Jazieh
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Oncology, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Foad Al Dayel
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shamayel Fahem
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | - Turki Al Fayea
- Princess Noorah Oncology Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Hatim Q Almaghrabi
- Princess Noorah Oncology Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Hanaa Bamefleh
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Khaled AlKattan
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Blaha Larbaoui
- Department of Medical Oncology, Anti Cancer Center, Oran, Algeria
| | - Taha Filalli
- Department of Medical Oncology, CHU Constantine, Algeria
| | | | - Hamed Alhusaini
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Kim KH, Ryu SY, Lee HY, Choi JY, Kwon OJ, Kim HK, Shim YM. Evaluating the tumor biology of lung adenocarcinoma: A multimodal analysis. Medicine (Baltimore) 2019; 98:e16313. [PMID: 31335678 PMCID: PMC6709045 DOI: 10.1097/md.0000000000016313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We evaluated the relationships among functional imaging modality such as PET-CT and DW-MRI and lung adenocarcinoma pathologic heterogeneity, extent of invasion depth, and tumor cellularity as a marker of tumor microenvironment.In total, 74 lung adenocarcinomas were prospectively included. All patients underwent 18F-fluorodeoxyglucose (FDG) PET-CT and MRI before curative surgery. Pathology revealed 68 stage I tumors, 3 stage II tumors, and 3 stage IIIA tumors. Comprehensive histologic subtyping was performed for all surgically resected tumors. Maximum standardized uptake value (SUVmax) and ADC values were correlated with pathologic grade, extent of invasion, solid tumor size, and tumor cellularity.Mean solid tumor size (low: 1.7 ± 3.0 mm, indeterminate: 13.9 ± 14.2 mm, and high grade: 30.3 ± 13.5 mm) and SUVmax (low: 1.5 ± 0.2, indeterminate: 3.5 ± 2.5, and high grade: 15.3 ± 0) had a significant relationship with pathologic grade based on 95% confidence intervals (P = .01 and P < .01, respectively). SUVmax showed a strong correlation with tumor cellularity (R = 0.713, P < .001), but was not correlated with extent of invasion (R = 0.387, P = .148). A significant and strong positive correlation was observed among SUVmax values and higher cellularity and pathologic grade. ADC did not exhibit a significant relationship with tumor cellularity.Intratumor heterogeneity quantification using a multimodal-multiparametric approach might be effective when tumor volume consists of a real tumor component as well as a non-tumorous stromal component.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
- Department of Radiology, Myongji Hospital, Goyang
| | - Seong-Yoon Ryu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | | | - O. Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Hong Kwan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Zhao Z, Jordan S, Tse ZTH. Devices for image-guided lung interventions: State-of-the-art review. Proc Inst Mech Eng H 2019; 233:444-463. [DOI: 10.1177/0954411919832042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related death. According to the American Cancer Society, there were an estimated 222,500 new cases of lung cancer and 155,870 deaths from lung cancer in the United States in 2017. Accurate localization in lung interventions is one of the keys to reducing the death rate from lung cancer. In this study, a total of 217 publications from 2006 to 2017 about designs of medical devices for localization in lung interventions were screened, shortlisted, and categorized by localization principle and reviewed for functionality. Each study was analyzed for engineering characteristics and clinical significance. Research regarding interventional imaging equipment, navigation systems, and surgical devices was reviewed, and both research prototypes and commercial products were discussed. Finally, the future directions and existing challenges were summarized, including real-time intra-procedure guidance, accuracy of localization, clinical application, clinical adoptability, and clinical regulatory issues.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Sophie Jordan
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- 3T Technologies LLC, Atlanta, GA, USA
| |
Collapse
|
9
|
Chaaya G, Abdelghani R, Kheir F, Komiya T, Vander Velde N. NSCLC: State of the Art Diagnosis, Treatment, and Outcomes. CURRENT PULMONOLOGY REPORTS 2018. [DOI: 10.1007/s13665-018-0198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Wu L, Wen X, Wang X, Wang C, Sun X, Wang K, Zhang H, Williams T, Stacy AJ, Chen J, Schmieder AH, Lanza GM, Shen B. Local Intratracheal Delivery of Perfluorocarbon Nanoparticles to Lung Cancer Demonstrated with Magnetic Resonance Multimodal Imaging. Am J Cancer Res 2018; 8:563-574. [PMID: 29290827 PMCID: PMC5743567 DOI: 10.7150/thno.21466] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
Eighty percent of lung cancers originate as subtle premalignant changes in the airway mucosal epithelial layer of bronchi and alveoli, which evolve and penetrate deeper into the parenchyma. Liquid-ventilation, with perfluorocarbons (PFC) was first demonstrated in rodents in 1966 then subsequently applied as lipid-encapsulated PFC emulsions to improve pulmonary function in neonatal infants suffering with respiratory distress syndrome in 1996. Subsequently, PFC nanoparticles (NP) were extensively studied as intravenous (IV) vascular-constrained nanotechnologies for diagnostic imaging and targeted drug delivery applications. Methods: This proof-of-concept study compared intratumoral localization of fluorescent paramagnetic (M) PFC NP in the Vx2 rabbit model using proton (1H) and fluorine (19F) magnetic resonance (MR) imaging (3T) following intratracheal (IT) or IV administration. MRI results were corroborated by fluorescence microscopy. Results: Dynamic 1H-MR and 19F-MR images (3T) obtained over 72 h demonstrated marked and progressive accumulation of M-PFC NP within primary lung Vx2 tumors during the first 12 h post IT administration. Marked 1H and 19F MR signal persisted for over 72 h. In contradistinction, IV M-PFC NP produced a modest transient signal during the initial 2 h post-injection that was consistent circumferential blood pool tumor enhancement. Fluorescence microscopy of excised tumors corroborated the MR results and revealed enormous intratumor NP deposition on day 3 after IT but not IV treatment. Rhodamine-phospholipid incorporated into the PFC nanoparticle surfactant was distributed widely within the tumor on day 3, which is consistent with a hemifusion-based contact drug delivery mechanism previously reported. Fluorescence microscopy also revealed similar high concentrations of M-PFC NP given IT for metastatic Vx2 lung tumors. Biodistribution studies in mice revealed that M-PFC NP given IV distributed into the reticuloendothelial organs, whereas, the same dosage given IT was basically not detected beyond the lung itself. PFC NP given IT did not impact rabbit behavior or impair respiratory function. PFC NP effects on cells in culture were negligible and when given IV or IT no changes in rabbit hematology nor serum clinical chemistry parameters were measured. Conclusion: IT delivery of PFC NP offered unique opportunity to locally deliver PFC NP in high concentrations into lung cancers with minimal extratumor systemic exposure.
Collapse
|
11
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Affiliation(s)
- Martin Reck
- From LungenClinic Grosshansdorf and Airway Research Center North, Grosshansdorf (M.R., K.F.R.), the German Center for Lung Research, Giessen (M.R., K.F.R.), University of Lübeck, Lübeck (M.R.), and Christian Albrechts University Kiel, Kiel (K.F.R.) - all in Germany
| | - Klaus F Rabe
- From LungenClinic Grosshansdorf and Airway Research Center North, Grosshansdorf (M.R., K.F.R.), the German Center for Lung Research, Giessen (M.R., K.F.R.), University of Lübeck, Lübeck (M.R.), and Christian Albrechts University Kiel, Kiel (K.F.R.) - all in Germany
| |
Collapse
|
13
|
Abstract
OBJECTIVE The purpose of this review is to summarize the applications of PET molecular imaging-directed biopsy of a variety of organs in the management of various diseases with a focus on cancers. CONCLUSION PET can yield metabolic information at the cellular and molecular levels, and PET-directed biopsy is playing an increasing role in the diagnosis and staging of diseases.
Collapse
|
14
|
Walker R, Deppen S, Smith G, Shi C, Lehman J, Clanton J, Moore B, Burns R, Grogan EL, Massion PP. 68Ga-DOTATATE PET/CT imaging of indeterminate pulmonary nodules and lung cancer. PLoS One 2017; 12:e0171301. [PMID: 28182730 PMCID: PMC5300187 DOI: 10.1371/journal.pone.0171301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE 18F-FDG PET/CT is widely used to evaluate indeterminate pulmonary nodules (IPNs). False positive results occur, especially from active granulomatous nodules. A PET-based imaging agent with superior specificity to 18F-FDG for IPNs, is badly needed, especially in areas of endemic granulomatous nodules. Somatostatin receptors (SSTR) are expressed in many malignant cells including small cell and non-small cell lung cancers (NSCLCs). 68Ga-DOTATATE, a positron emitter labeled somatostatin analog, combined with PET/CT imaging, may improve the diagnosis of IPNs over 18F-FDG by reducing false positives. Our study purpose was to test this hypothesis in our region with high endemic granulomatous IPNs. METHODS We prospectively performed 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT scans in the same 30 patients with newly diagnosed, treatment-naïve lung cancer (N = 14) or IPNs (N = 15) and one metastatic nodule. 68Ga-DOTATATE SUVmax levels at or above 1.5 were considered likely malignant. We analyzed the scan results, correlating with ultimate diagnosis via biopsy or 2-year chest CT follow-up. We also correlated 68Ga-DOTATATE uptake with immunohistochemical (IHC) staining for SSTR subtype 2A (SSTR2A) in pathological specimens. RESULTS We analyzed 31 lesions in 30 individuals, with 14 (45%) being non-neuroendocrine lung cancers and 1 (3%) being metastatic disease. McNemar's result comparing the two radiopharmaceuticals (p = 0.65) indicates that their accuracy of diagnosis in this indication are equivalent. 68Ga-DOTATATE was more specific (94% compared to 81%) and less sensitive 73% compared to 93%) than 18F-FDG. 68Ga-DOTATATE uptake correlated with SSTR2A expression in tumor stroma determined by immunohistochemical (IHC) staining in 5 of 9 (55%) NSCLCs. CONCLUSION 68Ga-DOTATATE and 18F-FDG PET/CT had equivalent accuracy in the diagnosis of non-neuroendocrine lung cancer and 68Ga-DOTATATE was more specific than 18F-FDG for the diagnosis of IPNs. IHC staining for SSTR2A receptor expression correlated with tumor stroma but not tumor cells.
Collapse
Affiliation(s)
- Ronald Walker
- Medical Imaging Service, Tennessee Valley VA Healthcare System, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States of America
| | - Stephen Deppen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Gary Smith
- Medical Imaging Service, Tennessee Valley VA Healthcare System, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jonathan Lehman
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jeff Clanton
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brandon Moore
- Medical Imaging Service, Tennessee Valley VA Healthcare System, Nashville, Tennessee, United States of America
| | - Rena Burns
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States of America
| | - Eric L. Grogan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Surgery, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Pierre P. Massion
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Pulmonary Critical Care Section, Medical Service, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Chen YP, Lv JW, Liu X, Zhang Y, Guo Y, Lin AH, Sun Y, Mao YP, Ma J. The Landscape of Clinical Trials Evaluating the Theranostic Role of PET Imaging in Oncology: Insights from an Analysis of ClinicalTrials.gov Database. Theranostics 2017; 7:390-399. [PMID: 28042342 PMCID: PMC5197072 DOI: 10.7150/thno.17087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
Abstract
In the war on cancer marked by personalized medicine, positron emission tomography (PET)-based theranostic strategy is playing an increasingly important role. Well-designed clinical trials are of great significance for validating the PET applications and ensuring evidence-based cancer care. This study aimed to provide a comprehensive landscape of the characteristics of PET clinical trials using the substantial resource of ClinicalTrials.gov database. We identified 25,599 oncology trials registered with ClinicalTrials.gov in the last ten-year period (October 2005-September 2015). They were systematically reviewed to validate classification into 519 PET trials and 25,080 other oncology trials used for comparison. We found that PET trials were predominantly phase 1-2 studies (86.2%) and were more likely to be single-arm (78.9% vs. 57.9%, P <0.001) using non-randomized assignment (90.1% vs. 66.7%, P <0.001) than other oncology trials. Furthermore, PET trials were small in scale, generally enrolling fewer than 100 participants (20.3% vs. 25.7% for other oncology trials, P = 0.014), which might be too small to detect a significant theranostic effect. The funding support from industry or National Institutes of Health shrunk over time (both decreased by about 5%), and PET trials were more likely to be conducted in only one region lacking international collaboration (97.0% vs. 89.3% for other oncology trials, P <0.001). These findings raise concerns that clinical trials evaluating PET imaging in oncology are not receiving the attention or efforts necessary to generate high-quality evidence. Advancing the clinical application of PET imaging will require a concerted effort to improve the quality of trials.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jia-Wei Lv
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xu Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| | - Yuan Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ying Guo
- Clinical Trials Centre, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| | - Ai-Hua Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Lung cancer is the leading cause of cancer deaths worldwide. Early detection is essential for long-term survival. Screening of high-risk individuals with low-dose computed tomography screening has proven to increase survival. However, current radiological imaging techniques have poor specificity for lung cancer detection and poor sensitivity for detection of mucosal or alveolar preinvasive malignant lesions. Bronchoscopy allows imaging and sampling of early lung cancer, with the highest safety profile and high diagnostic accuracy. RECENT FINDINGS Available technologies, such as autofluorescence bronchoscopy, narrow band imaging, and radial ultrasound bronchoscopy can significantly increase the yield and diagnostic accuracy of bronchoscopy for early cancer detection in the central airways. Newer technologies such as optical coherence tomography, confocal bronchoscopy, and Raman spectroscopy may significantly increase the diagnostic yield of both central and parenchymal early cancer lesions. SUMMARY Although some of these technologies are still investigational and are not readily available in most centers, they may identify early mucosal and alveolar cancer lesions accurately in the least invasive manner to provide appropriate therapy and prolong patient survival from lung cancer.
Collapse
|
17
|
Zhang P, Yorke E, Hu YC, Mageras G, Rimner A, Deasy JO. Predictive treatment management: incorporating a predictive tumor response model into robust prospective treatment planning for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2013; 88:446-52. [PMID: 24315562 DOI: 10.1016/j.ijrobp.2013.10.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE We hypothesized that a treatment planning technique that incorporates predicted lung tumor regression into optimization, predictive treatment planning (PTP), could allow dose escalation to the residual tumor while maintaining coverage of the initial target without increasing dose to surrounding organs at risk (OARs). METHODS AND MATERIALS We created a model to estimate the geometric presence of residual tumors after radiation therapy using planning computed tomography (CT) and weekly cone beam CT scans of 5 lung cancer patients. For planning purposes, we modeled the dynamic process of tumor shrinkage by morphing the original planning target volume (PTVorig) in 3 equispaced steps to the predicted residue (PTVpred). Patients were treated with a uniform prescription dose to PTVorig. By contrast, PTP optimization started with the same prescription dose to PTVorig but linearly increased the dose at each step, until reaching the highest dose achievable to PTVpred consistent with OAR limits. This method is compared with midcourse adaptive replanning. RESULTS Initial parenchymal gross tumor volume (GTV) ranged from 3.6 to 186.5 cm(3). On average, the primary GTV and PTV decreased by 39% and 27%, respectively, at the end of treatment. The PTP approach gave PTVorig at least the prescription dose, and it increased the mean dose of the true residual tumor by an average of 6.0 Gy above the adaptive approach. CONCLUSIONS PTP, incorporating a tumor regression model from the start, represents a new approach to increase tumor dose without increasing toxicities, and reduce clinical workload compared with the adaptive approach, although model verification using per-patient midcourse imaging would be prudent.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yu-Chi Hu
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Gig Mageras
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|