1
|
Elgaeva EE, Zorkoltseva IV, Nostaeva AV, Verzun DA, Tiys ES, Timoshchuk AN, Kirichenko AV, Svishcheva GR, Freidin MB, Williams FMK, Suri P, Aulchenko YS, Axenovich TI, Tsepilov YA. Decomposing the genetic background of chronic back pain. Hum Mol Genet 2025; 34:711-725. [PMID: 39895344 DOI: 10.1093/hmg/ddae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic back pain (CBP) is a disabling condition with a lifetime prevalence of 40% and a substantial socioeconomic burden. Because of the high heterogeneity of CBP, subphenotyping may help to improve prediction and support personalized treatment of CBP. To investigate CBP subphenotypes, we decomposed its genetic background into a shared one common to other chronic pain conditions (back, neck, hip, knee, stomach, and head pain) and unshared genetic background specific to CBP. We identified and replicated 18 genes with shared impact across different chronic pain conditions and two genes that were specific for CBP. Among people with CBP, we demonstrated that polygenic risk scores accounting for the shared and unshared genetic backgrounds of CBP may underpin different CBP subphenotypes. These subphenotypes are characterized by varying genetic predisposition to diverse medical conditions and interventions such as diabetes mellitus, myocardial infarction, diagnostic endoscopic procedures, and surgery involving muscles, bones, and joints.
Collapse
Affiliation(s)
- Elizaveta E Elgaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
- Novosibirsk State University, 1, Pirogova str., 630090, Novosibirsk, Russia
| | - Irina V Zorkoltseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
| | - Arina V Nostaeva
- Novosibirsk State University, 1, Pirogova str., 630090, Novosibirsk, Russia
| | - Dmitrii A Verzun
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
- Novosibirsk State University, 1, Pirogova str., 630090, Novosibirsk, Russia
| | - Evgeny S Tiys
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
| | - Anna N Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 27, building 1, Lomonosovsky ave., 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 9, Institutsky lane, 141700, Dolgoprudny, Russia
| | - Anatoliy V Kirichenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
| | - Gulnara R Svishcheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
- Vavilov Institute of General Genetics, RAS, 3, Gubkin str., 119991, Moscow, Russia
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, Westminster Bridge Rd., SE1 7EH, London, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, Westminster Bridge Rd., SE1 7EH, London, UK
| | - Pradeep Suri
- Department of Rehabilitation Medicine, University of Washington, 325, Ninth ave., WA 98104, Seattle, USA
- VA Puget Sound Health Care System, 1660, South Columbian Way, WA 98108, Seattle, USA
| | - Yurii S Aulchenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
- PolyOmica, 61, Het Vlaggeschip, 5237 PA, 's-Hertogenbosch, The Netherlands
| | - Tatiana I Axenovich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
| | - Yakov A Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10, Ac. Lavrentieva ave., 630090, Novosibirsk, Russia
| |
Collapse
|
2
|
Stanaway IB, Suri P, Afari N, Dochtermann D, Gerstenberger A, Pyarajan S, Roseen EJ, Gasperi M. Multi-ancestry meta-analysis of genome-wide association studies discovers 67 new loci associated with chronic back pain. Nat Commun 2025; 16:1525. [PMID: 39934103 PMCID: PMC11814113 DOI: 10.1038/s41467-024-55326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2024] [Indexed: 02/13/2025] Open
Abstract
This multi-ancestry meta-analysis of genome-wide association studies (GWAS) investigated the genetic factors underlying chronic back pain (CBP) in a sample from the Million Veteran Program comprised of 553,601 Veterans of African (19.2%), European (72.6%), and Hispanic (8.2%) ancestry. The results revealed novel (N = 67) and known (N = 20) genome-wide significant loci associated with CBP, with 43 independent variants replicating in a non-overlapping contemporary meta-GWAS of the spinal pain dorsalgia phenotype. The most significant novel variant was rs12533005 (chr7:114416000, p = 1.61 × 10-20, OR = 0.96 (95% CI: 0.95-0.97), EA = C, EAF = 0.39), in an intron of the FOXP2 gene. In silico functional characterization revealed enrichment in brain and pituitary tissues. Mendelian randomization analysis of 62 variants for CBP-MVP revealed 48 with causal links to dorsalgia. Notably, four genes (INPP5B, DRD2, HTT, SLC30A6) associated with these variants are targets of existing drugs. Our findings more than double the number of previously reported genetic predictors across all spinal pain phenotypes.
Collapse
Affiliation(s)
- Ian B Stanaway
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
- Department of Nephrology, University of Washington, Seattle, WA, USA
| | - Pradeep Suri
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, VAPSCHS, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
- Clinical Learning, Evidence, and Research (CLEAR) Center, University of Washington, Seattle, WA, USA
| | - Niloofar Afari
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| | - Daniel Dochtermann
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System (VABHS), Boston, MA, USA
| | - Armand Gerstenberger
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VAPSHCS, Seattle, WA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System (VABHS), Boston, MA, USA
| | - Eric J Roseen
- Section of General Internal Medicine, Department of Medicine, Boston University Chobanian & Avedision School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, VA Boston Healthcare System, Boston, MA, USA
| | - Marianna Gasperi
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA.
- Mental Illness Research Education and Clinical Center (MIRECC), VAPSHCS, Seattle, WA, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Vigeland MD, Flåm ST, Vigeland MD, Zucknick M, Wigemyr M, Bråten LCH, Gjefsen E, Zwart JA, Storheim K, Pedersen LM, Lie BA. Gene Expression Correlates with Disability and Pain Intensity in Patients with Chronic Low Back Pain and Modic Changes in a Sex-Specific Manner. Int J Mol Sci 2025; 26:800. [PMID: 39859512 PMCID: PMC11766089 DOI: 10.3390/ijms26020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic low back pain (cLBP) lacks clear physiological explanations, and the treatment options are of limited effect. We aimed to elucidate the underlying biology of cLBP in a subgroup of patients with Modic changes type I (suggestive of inflammatory vertebral bone marrow lesions) by correlating gene expression in blood with patient-reported outcomes on disability and pain intensity and explore sex differences. Patients were included from the placebo group of a clinical study on patients with cLBP and Modic changes. Blood was collected at the time of inclusion, after three months, and after one year, and gene expression was measured at all time points by high-throughput RNA sequencing. The patients reported disability using the Roland-Morris Disability Questionnaire, and pain intensity was assessed as a mean of three scores on a 0-10 numeric rating scale: current LBP, worst LBP within the last two weeks, and mean LBP within the last two weeks. The gene expression profiles were then correlated to the reported outcomes. Changes in gene expression over time correlated significantly with changes in both disability and pain. The findings showed distinct patterns in men and women, with negligible overlap in correlated genes between the sexes. The genes involved were enriched in immunological pathways, particularly T cell receptor complex and immune responses related to neutrophils. Several of the genes harbour polymorphisms that previously have been found to be associated with chronic pain. Taken together, our results indicate gender differences in the underlying biology of disability and pain intensity in patients with low back pain.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0316 Oslo, Norway
| | - Monica Wigemyr
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Lars Christian Haugli Bråten
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Elisabeth Gjefsen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Kjersti Storheim
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Linda Margareth Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Benedicte Alexandra Lie
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - the AIM Study Group
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
4
|
Salo V, Määttä J, Sliz E, Reimann E, Mägi R, Reis K, Elhanas AG, Reigo A, Palta P, Esko T, Karppinen J, Kettunen J. Genome-wide meta-analysis conducted in three large biobanks expands the genetic landscape of lumbar disc herniations. Nat Commun 2024; 15:9424. [PMID: 39511132 PMCID: PMC11544010 DOI: 10.1038/s41467-024-53467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Given that lumbar disc herniation (LDH) is a prevalent spinal condition that causes significant individual suffering and societal costs, the genetic basis of LDH has received relatively little research. Our aim is to increase understanding of the genetic factors influencing LDH. We perform a genome-wide association analysis (GWAS) of LDH in the FinnGen project and in Estonian and UK biobanks, followed by a genome-wide meta-analysis to combine the results. In the meta-analysis, we identify 41 loci that have not been associated with LDH in prior studies on top of the 23 known risk loci. We detect LDH-associated loci in the vicinity of genes related to inflammation, disc-related structures, and synaptic transmission. Overall, our research contributes to a deeper understanding of the genetic factors behind LDH, potentially paving the way for the development of new therapeutics, prevention methods, and treatments for symptomatic LDH in the future.
Collapse
Affiliation(s)
- Ville Salo
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Juhani Määttä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Eeva Sliz
- Research unit of Population Health, Faculty of Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaro Karppinen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Rehabilitation Services of Wellbeing Services County of South Karelia, Lappeenranta, Finland
| | - Johannes Kettunen
- Research unit of Population Health, Faculty of Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Choi SY, Ok SM, Jeong SH, Ahn YW, Jeon HM, Ju HM. The Potential of Percent Agreement as an Adjunctive Diagnostic Tool for Acute Temporomandibular Disorder. J Clin Med 2024; 13:5360. [PMID: 39336847 PMCID: PMC11432075 DOI: 10.3390/jcm13185360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: It is well established that individuals with chronic temporomandibular disorder (TMD) exhibit differences in their physical and psychosocial characteristics from those with acute TMD. However, few studies have analyzed the physical and psychosocial characteristics of patients with acute TMD. The objective of this cross-sectional study is twofold: first, to ascertain whether there are differences in physical and psychosocial factors among patients with acute TMD based on the percent agreement between patient-reported pain sites and pain sites identified through standardized palpation and, second, to determine the potential of percent agreement as a diagnostic and prognostic factor. Methods: We analyzed physical and psychosocial factors in 309 patients diagnosed with acute TMD. Of these, 171 patients were selected for an analysis of their response to treatment. These patients were divided into three groups based on their percent agreement: Group A (agreement under 80%), Group B (agreement 80-89%), and Group C (agreement 90% or over) in the initial analysis and Group a (agreement under 80%), Group b (agreement 80-89%), and Group c (agreement 90% or over) in the subsequent analysis. This study was approved by the Ethics Committee of Pusan National University Dental Hospital (IRB No. 2023-05-011, 25 May 2023). Results: The lower the percent agreement, the greater the parafunctional oral habits, stress, chronicity, somatization, depression, anxiety, and number of painful sites. A lower percent agreement was associated with poorer treatment outcomes. The percent agreement demonstrated a 41.2% capacity to predict residual pain after treatment. Conclusions: Clinicians can utilize percentage agreement as an adjunctive diagnostic tool to provide more suitable treatments to patients.
Collapse
Affiliation(s)
- Seo-Young Choi
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (S.-Y.C.)
| | - Soo-Min Ok
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (S.-Y.C.)
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sung-Hee Jeong
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (S.-Y.C.)
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-Woo Ahn
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (S.-Y.C.)
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye-Mi Jeon
- Department of Oral Medicine, Dental Clinic Center, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Hye-Min Ju
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (S.-Y.C.)
- Department of Oral Medicine, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Betz JW, Lightstone DF, Oakley PA, Haas JW, Moustafa IM, Harrison DE. Reliability of the Biomechanical Assessment of the Sagittal Lumbar Spine and Pelvis on Radiographs Used in Clinical Practice: A Systematic Review of the Literature. J Clin Med 2024; 13:4650. [PMID: 39200793 PMCID: PMC11355792 DOI: 10.3390/jcm13164650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Biomechanical analysis of the sagittal alignment of the lumbar spine and pelvis on radiographs is common in clinical practices including chiropractic, physical therapy, scoliosis-related thoraco-lumbo-sacral orthosis (TLSO) management, orthopedics, and neurosurgery. Of specific interest is the assessment of pelvic morphology and the relationship between angle of pelvic incidence, sacral slope, and lumbar lordosis to pain, disability, and clinical treatment of spine conditions. The current state of the literature on the reliability of common methods quantifying these parameters on radiographs is limited. Methods: The objective of this systematic review is to identify and review the available studies on the reliability of different methods of biomechanical analysis of sagittal lumbo-pelvic parameters used in clinical practice. Our review followed the recommendations of the preferred reporting items for systematic reviews and meta-analyses (PRISMA). The design of this systematic review was registered with PROSPERO (CRD42023379873). Results: The search strategy yielded a total of 2387 articles. A total of 1539 articles were screened after deduplication and exclusion by automation tools, leaving 473 full-text articles that were retrieved. After exclusion, 64 articles met the inclusion criteria. The preponderance of the evidence showed good to excellent reliability for biomechanical assessment of sagittal lumbo-pelvic spine alignment. Conclusions: The results of this systematic review of the literature show that sagittal radiographic analysis of spinal biomechanics and alignment of the human lumbo-pelvic spine is a reliable tool for aiding diagnosis and management in clinical settings.
Collapse
Affiliation(s)
| | | | - Paul A. Oakley
- Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Jason W. Haas
- Chiropractic Biophysics NonProfit, Inc., Eagle, ID 83616, USA;
| | - Ibrahim M. Moustafa
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Neuromusculoskeletal Rehabilitation Research Group, RIMHS—Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
7
|
Sannes AC, Ghani U, Niazi IK, Moberget T, Jonassen R, Haavik H, Gjerstad J. Investigating Whether a Combination of Electro-Encephalography and Gene Expression Profiling Can Predict the Risk of Chronic Pain: A Protocol for an Observational Prospective Cohort Study. Brain Sci 2024; 14:641. [PMID: 39061381 PMCID: PMC11274615 DOI: 10.3390/brainsci14070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite most episodes of low back pain (LBP) being short-lasting, some transition into persistent long-lasting problems. Hence, the need for a deeper understanding of the physiological mechanisms of this is pertinent. Therefore, the aims of the present study are (1) to map pain-induced changes in brain activity and blood gene expression associated with persistent LBP, and (2) to explore whether these brain and gene expression signatures show promise as predictive biomarkers for the development of persistent LBP. The participants will be allocated into three different pain groups (no pain, mild short-lasting, or moderate long-term). One in-person visit, where two blood samples will be collected and sent for RNA sequencing, along with resting 64-channel electro-encephalography measurements before, during, and after a cold pressor test, will be conducted. Thereafter, follow-up questionnaires will be distributed at 2 weeks, 3 months, and 6 months. Recruitment will start during the second quarter of 2024, with expected completion by the last quarter of 2024. The results are expected to provide insight into the relationship between central nervous system activity, gene expression profiles, and LBP. If successful, this study has the potential to provide physiological indicators that are sensitive to the transition from mild, short-term LBP to more problematic, long-term LBP.
Collapse
Affiliation(s)
- Ann-Christin Sannes
- Faculty of Health Science, Oslo Metropolitan University, 0890 Oslo, Norway
- Department for Research and Development in Mental Health, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Usman Ghani
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand (I.K.N.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand (I.K.N.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
- Faculty of Medicine, Aalborg University, 9260 Aalborg, Denmark
| | - Torgeir Moberget
- Faculty of Health Sciences, Kristiania University College, 0107 Oslo, Norway
- Centre for Precision Psychiatry, University of Oslo, 0373 Oslo, Norway
| | - Rune Jonassen
- Faculty of Health Science, Oslo Metropolitan University, 0890 Oslo, Norway
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand (I.K.N.)
| | - Johannes Gjerstad
- Department for Research and Development in Mental Health, Akershus University Hospital, 1474 Lørenskog, Norway
- Faculty of Health Sciences, Kristiania University College, 0107 Oslo, Norway
| |
Collapse
|
8
|
Toikumo S, Vickers-Smith R, Jinwala Z, Xu H, Saini D, Hartwell EE, Pavicic M, Sullivan KA, Xu K, Jacobson DA, Gelernter J, Rentsch CT, Stahl E, Cheatle M, Zhou H, Waxman SG, Justice AC, Kember RL, Kranzler HR. A multi-ancestry genetic study of pain intensity in 598,339 veterans. Nat Med 2024; 30:1075-1084. [PMID: 38429522 DOI: 10.1038/s41591-024-02839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/27/2024] [Indexed: 03/03/2024]
Abstract
Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects the quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids had a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well-characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 126 independent genetic loci, 69 of which are new. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level and cognitive traits. Integration of the genome-wide association studies findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, β-blockers and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel Vickers-Smith
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Epidemiology and Environmental Health, University of Kentucky College of Public Health, Lexington, KY, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divya Saini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily E Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mirko Pavicic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kyle A Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher T Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- London School of Hygiene & Tropical Medicine, London, UK
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Martin Cheatle
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Sofat N, Lambarth A. Can we achieve pain stratification in musculoskeletal conditions? Implications for clinical practice. FRONTIERS IN PAIN RESEARCH 2024; 5:1362757. [PMID: 38524267 PMCID: PMC10958789 DOI: 10.3389/fpain.2024.1362757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
In the last few years there has been an increased appreciation that pain perception in rheumatic and musculoskeletal diseases (RMDs) has several mechanisms which include nociceptive, inflammatory, nociplastic and neuropathic components. Studies in specific patient groups have also demonstrated that the pain experienced by people with specific diagnoses can present with distinctive components over time. For example, the pain observed in rheumatoid arthritis has been widely accepted to be caused by the activation of nociceptors, potentiated by the release of inflammatory mediators, including prostaglandins, leukotrienes and cytokine networks in the joint environment. However, people with RA may also experience nociplastic and neuropathic pain components, particularly when treatments with disease modifying anti-rheumatic drugs (DMARDs) have been implemented and are insufficient to control pain symptoms. In other RMDs, the concept of pain sensitisation or nociplastic pain in driving ongoing pain symptoms e.g. osteoarthritis and fibromyalgia, is becoming increasingly recognised. In this review, we explore the hypothesis that pain has distinct modalities based on clinical, pathophysiological, imaging and genetic factors. The concept of pain stratification in RMD is explored and implications for future management are also discussed.
Collapse
Affiliation(s)
- Nidhi Sofat
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- Department of Rheumatology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew Lambarth
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- Department of Rheumatology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Bhatt RR, Haddad E, Zhu AH, Thompson PM, Gupta A, Mayer EA, Jahanshad N. Mapping Brain Structure Variability in Chronic Pain: The Role of Widespreadness and Pain Type and Its Mediating Relationship With Suicide Attempt. Biol Psychiatry 2024; 95:473-481. [PMID: 37543299 PMCID: PMC10838358 DOI: 10.1016/j.biopsych.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Chronic pain affects nearly 20% of the U.S. POPULATION It is a leading cause of disability globally and is associated with a heightened risk for suicide. The role of the central nervous system in the perception and maintenance of chronic pain has recently been accepted, but specific brain circuitries involved have yet to be mapped across pain types in a large-scale study. METHODS We used data from the UK Biobank (N = 21,968) to investigate brain structural alterations in individuals reporting chronic pain compared with pain-free control participants and their mediating effect on history of suicide attempt. RESULTS Chronic pain and, more notably, chronic multisite pain was associated with, on average, lower surface area throughout the cortex after adjusting for demographic, clinical, and neuropsychiatric confounds. Only participants with abdominal pain showed lower subcortical volumes, including the amygdala and brainstem, and lower cerebellum volumes. Participants with chronic headaches showed a widespread thicker cortex compared with control participants. Mediation analyses revealed that precuneus thickness mediated the relationship of chronic multisite pain and history of suicide attempt. Mediating effects were also identified specific to localized pain, with the strongest effect being amygdala volume in individuals with chronic abdominal pain. CONCLUSIONS Results support a widespread effect of chronic pain on brain structure and distinct brain structures underlying chronic musculoskeletal pain, visceral pain, and headaches. Mediation effects of regions in the extended ventromedial prefrontal cortex subsystem suggest that exacerbated negative internal states, negative self-referencing, and impairments in future planning may underlie suicidal behaviors in individuals with chronic pain.
Collapse
Affiliation(s)
- Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, California.
| | - Elizabeth Haddad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, California
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, California
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine at USC, University of Southern California, Los Angeles, California.
| |
Collapse
|
11
|
Wang C, Xu Y, Xu M, Sun C, Zhang X, Tao X, Song T. SPOCK2 modulates neuropathic pain by interacting with MT1-MMP to regulate astrocytic MMP-2 activation in rats with chronic constriction injury. J Neuroinflammation 2024; 21:57. [PMID: 38388415 PMCID: PMC10885439 DOI: 10.1186/s12974-024-03051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a kind of intractable pain. The pathogenesis of NP remains a complicated issue for pain management practitioners. SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (SPOCK2) are members of the SPOCK family that play a significant role in the development of the central nervous system. In this study, we investigated the role of SPOCK2 in the development of NP in a rat model of chronic constriction injury (CCI). METHODS Sprague-Dawley rats were randomly grouped to establish CCI models. We examined the effects of SPOCK2 on pain hpersensitivity and spinal astrocyte activation after CCI-induced NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to reflects the pain behavioral degree. Molecular mechanisms involved in SPOCK2-mediated NP in vivo were examined by western blot analysis, immunofluorescence, immunohistochemistry, and co-immunoprecipitation. In addition, we examined the SPOCK2-mediated potential protein-protein interaction (PPI) in vitro coimmunoprecipitation (Co-IP) experiments. RESULTS We founded the expression level of SPOCK2 in rat spinal cord was markedly increased after CCI-induced NP, while SPOCK2 downregulation could partially relieve pain caused by CCI. Our research showed that SPOCK2 expressed significantly increase in spinal astrocytes when CCI-induced NP. In addition, SPOCK2 could act as an upstream signaling molecule to regulate the activation of matrix metalloproteinase-2 (MMP-2), thus affecting astrocytic ERK1/2 activation and interleukin (IL)-1β production in the development of NP. Moreover, in vitro coimmunoprecipitation (Co-IP) experiments showed that SPOCK2 could interact with membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14) to regulate MMP-2 activation by the SPARC extracellular (SPARC_EC) domain. CONCLUSIONS Research shows that SPOCK2 can interact with MT1-MMP to regulate MMP-2 activation, thus affecting astrocytic ERK1/2 activation and IL-1β production to achieve positive promotion of NP.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yitong Xu
- Department of Pathology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Miao Xu
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Cong Sun
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaojiao Zhang
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tao Song
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
12
|
Zorkoltseva IV, Elgaeva EE, Belonogova NM, Kirichenko AV, Svishcheva GR, Freidin MB, Williams FMK, Suri P, Tsepilov YA, Axenovich TI. Multi-Trait Exome-Wide Association Study of Back Pain-Related Phenotypes. Genes (Basel) 2023; 14:1962. [PMID: 37895311 PMCID: PMC10606006 DOI: 10.3390/genes14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Back pain (BP) is a major contributor to disability worldwide, with heritability estimated at 40-60%. However, less than half of the heritability is explained by common genetic variants identified by genome-wide association studies. More powerful methods and rare and ultra-rare variant analysis may offer additional insight. This study utilized exome sequencing data from the UK Biobank to perform a multi-trait gene-based association analysis of three BP-related phenotypes: chronic back pain, dorsalgia, and intervertebral disc disorder. We identified the SLC13A1 gene as a contributor to chronic back pain via loss-of-function (LoF) and missense variants. This gene has been previously detected in two studies. A multi-trait approach uncovered the novel FSCN3 gene and its impact on back pain through LoF variants. This gene deserves attention because it is only the second gene shown to have an effect on back pain due to LoF variants and represents a promising drug target for back pain therapy.
Collapse
Affiliation(s)
- Irina V. Zorkoltseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
| | - Elizaveta E. Elgaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nadezhda M. Belonogova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
| | - Anatoliy V. Kirichenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
| | - Gulnara R. Svishcheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maxim B. Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK;
| | - Pradeep Suri
- Seattle Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Rehabilitation Care Services, Seattle, WA 98208, USA
- Clinical Learning, Evidence, and Research Center, University of Washington, Seattle, WA 98195, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yakov A. Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
| | - Tatiana I. Axenovich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.V.Z.); (E.E.E.); (N.M.B.); (A.V.K.); (G.R.S.); (Y.A.T.)
| |
Collapse
|
13
|
Hébert HL, Pascal MM, Smith BH, Wynick D, Bennett DL. Big data, big consortia, and pain: UK Biobank, PAINSTORM, and DOLORisk. Pain Rep 2023; 8:e1086. [PMID: 38225956 PMCID: PMC10789453 DOI: 10.1097/pr9.0000000000001086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic pain (CP) is a common and often debilitating disorder that has major social and economic impacts. A subset of patients develop CP that significantly interferes with their activities of daily living and requires a high level of healthcare support. The challenge for treating physicians is in preventing the onset of refractory CP or effectively managing existing pain. To be able to do this, it is necessary to understand the risk factors, both genetic and environmental, for the onset of CP and response to treatment, as well as the pathogenesis of the disorder, which is highly heterogenous. However, studies of CP, particularly pain with neuropathic characteristics, have been hindered by a lack of consensus on phenotyping and data collection, making comparisons difficult. Furthermore, existing cohorts have suffered from small sample sizes meaning that analyses, especially genome-wide association studies, are insufficiently powered. The key to overcoming these issues is through the creation of large consortia such as DOLORisk and PAINSTORM and biorepositories, such as UK Biobank, where a common approach can be taken to CP phenotyping, which allows harmonisation across different cohorts and in turn increased study power. This review describes the approach that was used for studying neuropathic pain in DOLORisk and how this has informed current projects such as PAINSTORM, the rephenotyping of UK Biobank, and other endeavours. Moreover, an overview is provided of the outputs from these studies and the lessons learnt for future projects.
Collapse
Affiliation(s)
- Harry L. Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Mathilde M.V. Pascal
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Blair H. Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - David Wynick
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David L.H. Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Toikumo S, Vickers-Smith R, Jinwala Z, Xu H, Saini D, Hartwell E, Venegas MP, Sullivan KA, Xu K, Jacobson DA, Gelernter J, Rentsch CT, Stahl E, Cheatle M, Zhou H, Waxman SG, Justice AC, Kember RL, Kranzler HR. The genetic architecture of pain intensity in a sample of 598,339 U.S. veterans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.09.23286958. [PMID: 36993749 PMCID: PMC10055465 DOI: 10.1101/2023.03.09.23286958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids played a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 125 independent genetic loci, 82 of which are novel. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level, and cognitive traits. Integration of the GWAS findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, beta-blockers, and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel Vickers-Smith
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Epidemiology, University of Kentucky College of Public Health; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divya Saini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mirko P. Venegas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | | | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Christopher T. Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Martin Cheatle
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G. Waxman
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Back Pain without Disease or Substantial Injury in Children and Adolescents: A Twin Family Study Investigating Genetic Influence and Associations. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020375. [PMID: 36832504 PMCID: PMC9955700 DOI: 10.3390/children10020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
This twin family study first aimed to investigate the evidence for genetic factors predicting the risk of lifetime prevalence of non-specific low back pain of at least three months duration (LBP (life)) and one-month current prevalence of thoracolumbar back pain (TLBP (current)) using a study of children, adolescents, and their first-degree relatives. Secondly, the study aimed to identify associations between pain in the back with pain in other regions and also with other conditions of interest. Randomly selected families (n = 2479) with child or adolescent twin pairs and their biological parents and first siblings were approached by Twins Research Australia. There were 651 complete twin pairs aged 6-20 years (response 26%). Casewise concordance, correlation, and odds ratios were compared for monozygous (MZ) and dizygous (DZ) pairs to enable inference about the potential existence of genetic vulnerability. Multivariable random effects logistic regression was used to estimate associations between LBP (life) or TLBP (current) as an outcome with the potentially relevant condition as predictors. The MZ pairs were more similar than the DZ pairs for each of the back pain conditions (all p values < 0.02). Both back pain conditions were associated with pain in multiple sites and with primary pain and other conditions using the combined twin and sibling sample (n = 1382). Data were consistent with the existence of genetic influences on the pain measures under the equal environments assumption of the classic twin model and associations with both categories of back pain were consistent with primary pain conditions and syndromes of childhood and adolescence which has research and clinical implications.
Collapse
|
16
|
Ruffilli A, Neri S, Manzetti M, Barile F, Viroli G, Traversari M, Assirelli E, Vita F, Geraci G, Faldini C. Epigenetic Factors Related to Low Back Pain: A Systematic Review of the Current Literature. Int J Mol Sci 2023; 24:ijms24031854. [PMID: 36768184 PMCID: PMC9915125 DOI: 10.3390/ijms24031854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Low back pain (LBP) is one of the most common causes of pain and disability. At present, treatment and interventions for acute and chronic low back pain often fail to provide sufficient levels of pain relief, and full functional restoration can be challenging. Considering the significant socio-economic burden and risk-to-benefit ratio of medical and surgical intervention in low back pain patients, the identification of reliable biomarkers such as epigenetic factors associated with low back pain could be useful in clinical practice. The aim of this study was to review the available literature regarding the epigenetic factors associated with low back pain. This review was carried out in accordance with Preferential Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was carried out in October 2022. Only peer-reviewed articles were considered for inclusion. Fourteen studies were included and showed promising results in terms of reliable markers. Epigenetic markers for LBP have the potential to significantly modify disease management. Most recent evidence suggests that epigenetics is a more promising field for the identification of factors associated with LBP, offering a rationale for further investigation in this field with the long-term goal of finding epigenetic biomarkers that could constitute biological targets for disease management and treatment.
Collapse
Affiliation(s)
- Alberto Ruffilli
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-(05)-16366807
| | - Marco Manzetti
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Francesca Barile
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Giovanni Viroli
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Matteo Traversari
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Elisa Assirelli
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Fabio Vita
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Giuseppe Geraci
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| |
Collapse
|
17
|
Omics approaches to discover pathophysiological pathways contributing to human pain. Pain 2022; 163:S69-S78. [PMID: 35994593 PMCID: PMC9557800 DOI: 10.1097/j.pain.0000000000002726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/19/2022] [Indexed: 10/26/2022]
|