1
|
Lee MFH, Steffens D, Chung JHY, Posniak S, Cheng K, Clark J, Wallace G, Mukherjee P. Coculture of Chondrocytes and Stem Cells: A Review of Head and Neck Cell Lines for Cartilage Regeneration. Cells Tissues Organs 2024; 214:36-51. [PMID: 38513621 DOI: 10.1159/000538461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Bioprinting, using "bio-inks" consisting of living cells, supporting structures, and biological motifs to create customized constructs, is an emerging technique that aims to overcome the challenges of cartilaginous reconstruction of head and neck structures. Several living cell lines and culturing methods have been explored as bio-inks with varying efficacy. Coculture of primary chondrocytes and stem cells (SCs) is one technique well established for degenerative joint disease treatment, with potential for use in expanding chondrocyte populations for bio-inks. This study aimed to evaluate the techniques for coculture of primary chondrocytes and SCs for head and neck cartilage regeneration. METHODS A literature review was performed through OVID/Web of Science/MEDLINE/BIOSIS Previews/Embase. Studies reporting on chondrocytes and SCs in conjunction with coculture or cartilage regeneration were included. Studies not reporting on findings from chondrocytes/SCs of the head and neck were excluded. Extracted data included cell sources, coculture ratios, and histological, biochemical, and clinical outcomes. RESULTS Fifteen studies met inclusion criteria. Auricular cartilage was the most common chondrocyte source (n = 10), then nasal septum (n = 5), articular (n = 1), and tracheal cartilage (n = 1). Bone marrow was the most common SC source (n = 9) then adipose tissue (n = 7). Techniques varied, with coculture ratios ranging from 1:1 to 1:10. All studies reported coculture to be superior to SC monoculture by all outcomes. Most studies reported superiority or equivalence of coculture to chondrocyte monoculture by all outcomes. When comparing clinical outcomes, coculture constructs were equivalent to chondrocyte monoculture in diameter and equivalent or inferior in wet weight and height. CONCLUSION Coculture of primary chondrocytes and SCs is a promising technique for expanding chondrocyte populations, with at least equivalence to chondrocyte monoculture and superior to SC monoculture when seeded at the same chondrocyte densities. However, there remains a lack of consensus regarding the optimal cell sources and coculture ratios.
Collapse
Affiliation(s)
- Michael Fook-Ho Lee
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Steffens
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Surgical Outcomes Research Centre (SOuRCe), Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Johnson H Y Chung
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Steven Posniak
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
| | - Jonathan Clark
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Payal Mukherjee
- Royal Prince Alfred Institute of Academic Surgery (RPA-IAS), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, Health and Human Sciences, Department of Clinical Medicine, Macquarie University, Macquarie Park, New South Wales, Australia
| |
Collapse
|
2
|
Liu Y, Wu W, Seunggi C, Li Z, Huang Y, Zhou K, Wang B, Chen Z, Zhang Z. The application and progress of stem cells in auricular cartilage regeneration: a systematic review. Front Cell Dev Biol 2023; 11:1204050. [PMID: 37564374 PMCID: PMC10409996 DOI: 10.3389/fcell.2023.1204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: The treatment of microtia or acquired ear deformities by surgery is a significant challenge for plastic and ENT surgeons; one of the most difficult points is constructing the scaffold for auricular reconstruction. As a type of cell with multiple differentiation potentials, stem cells play an essential role in the construction of cartilage scaffolds, and therefore have received widespread attention in ear reconstructive research. Methods: A literature search was conducted for peer-reviewed articles between 2005 and 2023 with the following keywords: stem cells; auricular cartilage; ear cartilage; conchal cartilage; auricular reconstruction, regeneration, and reparation of chondrocytes; tissue engineering in the following databases: PubMed, MEDLINE, Cochrane, and Ovid. Results: Thirty-three research articles were finally selected and their main characteristics were summarized. Adipose-derived stem cells (ADSCs), bone marrow mesenchymal stem cells (BMMSCs), perichondrial stem/progenitor cells (PPCs), and cartilage stem/progenitor cells (CSPCs) were mainly used in chondrocyte regeneration. Injecting the stem cells into the cartilage niche directly, co-culturing the stem cells with the auricular cartilage cells, and inducing the cells in the chondrogenic medium in vitro were the main methods that have been demonstrated in the studies. The chondrogenic ability of these cells was observed in vitro, and they also maintained good elasticity and morphology after implantation in vivo for a period of time. Conclusion: ADSC, BMMSC, PPC, and CSPC were the main stem cells that have been researched in craniofacial cartilage reconstruction, the regenerative cartilage performed highly similar to normal cartilage, and the test of AGA and type II collagen content also proved the cartilage property of the neo-cartilage. However, stem cell reconstruction of the auricle is still in the initial stage of animal experiments, transplantation with such scaffolds in large animals is still lacking, and there is still a long way to go.
Collapse
Affiliation(s)
- Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Seunggi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lipid nanoparticle-encapsulated VEGFa siRNA facilitates cartilage formation by suppressing angiogenesis. Int J Biol Macromol 2022; 221:1313-1324. [PMID: 36108749 DOI: 10.1016/j.ijbiomac.2022.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/18/2022]
Abstract
Cartilage is an important tissue that is widely found in joints, ears, nose and other organs. The limited capacity to regenerate makes cartilage reconstruction an urgent clinical demand. Due to the avascular nature of cartilage, we hypothesized that inhibition of vascularization contributes to cartilage formation. Here, we used VEGFa siRNA to inhibit the infiltration of the local vascular system. Optimized lipid nanoparticles were prepared by microfluidics for the delivery of siRNA. Then, we constructed a tissue engineering scaffold. Both seed cells and VEGFa siRNA-LNPs were loaded in a GELMA hydrogel. Subcutaneous implantation experiments in nude mice indicate that this is a promising strategy for cartilage reconstruction. The regenerated cartilage was superior, with significant upregulation of SOX9, COL-II and ACAN. This is attributed to an environment deficient in oxygen and nutrients, which facilitates cartilage formation by upregulating HIF-1α and FOXO transcription factors. In conclusion, a GelMA/Cells+VEGFa siRNA-LNPs scaffold was constructed to achieve superior cartilage regeneration.
Collapse
|
4
|
Otto IA, Bernal PN, Rikkers M, van Rijen MH, Mensinga A, Kon M, Breugem CC, Levato R, Malda J. Human Adult, Pediatric and Microtia Auricular Cartilage harbor Fibronectin-adhering Progenitor Cells with Regenerative Ear Reconstruction Potential. iScience 2022; 25:104979. [PMID: 36105583 PMCID: PMC9464889 DOI: 10.1016/j.isci.2022.104979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iris A. Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Margot Rikkers
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Mattie H.P. van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Moshe Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Corstiaan C. Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, 1105 ZA, the Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| |
Collapse
|
5
|
Cao Y, Sang S, An Y, Xiang C, Li Y, Zhen Y. Progress of 3D Printing Techniques for Nasal Cartilage Regeneration. Aesthetic Plast Surg 2022; 46:947-964. [PMID: 34312695 DOI: 10.1007/s00266-021-02472-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Once cartilage is damaged, its self-repair capacity is very limited. The strategy of tissue engineering has brought a new idea for repairing cartilage defect and cartilage regeneration. In particular, nasal cartilage regeneration is a challenge because of the steady increase in nasal reconstruction after oncologic resection, trauma, or rhinoplasty. From this perspective, three-dimensional (3D) printing has emerged as a promising technology to address the complexity of nasal cartilage regeneration, using patient's image data and computer-aided deposition of cells and biomaterials to precisely fabricate complex, personalized tissue-engineered constructs. In this review, we summarized the major progress of three prevalent 3D printing approaches, including inkjet-based printing, extrusion-based printing and laser-assisted printing. Examples are highlighted to illustrate 3D printing for nasal cartilage regeneration, with special focus on the selection of seeded cell, scaffolds and growth factors. The purpose of this paper is to systematically review recent research about the challenges and progress and look forward to the future of 3D printing techniques for nasal cartilage regeneration.Level of Evidence III This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/00266 .
Collapse
Affiliation(s)
- Yanyan Cao
- MicroNano System Research Center, College of Information and Computer, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Shengbo Sang
- MicroNano System Research Center, College of Information and Computer, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanping Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075061, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
6
|
Stelcer E, Kulcenty K, Rucinski M, Kruszyna-Mochalska M, Skrobala A, Sobecka A, Jopek K, Suchorska WM. Ionizing radiation exposure of stem cell-derived chondrocytes affects their gene and microRNA expression profiles and cytokine production. Sci Rep 2021; 11:7481. [PMID: 33820914 PMCID: PMC8021574 DOI: 10.1038/s41598-021-86230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be differentiated into chondrocyte-like cells. However, implantation of these cells is not without risk given that those transplanted cells may one day undergo ionizing radiation (IR) in patients who develop cancer. We aimed to evaluate the effect of IR on chondrocyte-like cells differentiated from hiPSCs by determining their gene and microRNA expression profile and proteomic analysis. Chondrocyte-like cells differentiated from hiPSCs were placed in a purpose-designed phantom to model laryngeal cancer and irradiated with 1, 2, or 3 Gy. High-throughput analyses were performed to determine the gene and microRNA expression profile based on microarrays. The composition of the medium was also analyzed. The following essential biological processes were activated in these hiPSC-derived chondrocytes after IR: "apoptotic process", "cellular response to DNA damage stimulus", and "regulation of programmed cell death". These findings show the microRNAs that are primarily responsible for controlling the genes of the biological processes described above. We also detected changes in the secretion level of specific cytokines. This study demonstrates that IR activates DNA damage response mechanisms in differentiated cells and that the level of activation is a function of the radiation dose.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland.
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland.
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781, Poznan, Poland.
| | - Katarzyna Kulcenty
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781, Poznan, Poland
| | - Marta Kruszyna-Mochalska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15th, 61-866, Poznan, Poland
| | - Agnieszka Skrobala
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15th, 61-866, Poznan, Poland
| | - Agnieszka Sobecka
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
| |
Collapse
|
7
|
Otto IA, Capendale PE, Garcia JP, de Ruijter M, van Doremalen RFM, Castilho M, Lawson T, Grinstaff MW, Breugem CC, Kon M, Levato R, Malda J. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio 2021; 9:100094. [PMID: 33665603 PMCID: PMC7903133 DOI: 10.1016/j.mtbio.2021.100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction. First application of human auricular cartilage progenitor cells for bioprinting. Dual-printing of hybrid ear-shaped constructs with excellent shape fidelity over time. Strategy and design ensured adequate deposition of cartilage-like matrix throughout large auricular constructs.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - P E Capendale
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J P Garcia
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - M de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - R F M van Doremalen
- Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, the Netherlands.,Bureau Science & Innovation, Deventer Hospital, Deventer, the Netherlands
| | - M Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - T Lawson
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - M W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - C C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, the Netherlands
| | - M Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, the Netherlands
| |
Collapse
|
8
|
Lee SS, Wu YC, Huang SH, Chen YC, Srinivasan P, Hsieh DJ, Yeh YC, Lai YP, Lin YN. A novel 3D histotypic cartilage construct engineered by supercritical carbon dioxide decellularized porcine nasal cartilage graft and chondrocytes exhibited chondrogenic capability in vitro. Int J Med Sci 2021; 18:2217-2227. [PMID: 33859530 PMCID: PMC8040423 DOI: 10.7150/ijms.56342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Augmentative and reconstructive rhinoplasty surgical procedures use autologous tissue grafts or synthetic grafts to repair the nasal defect and aesthetic reconstruction. Donor site trauma and morbidity are common in autologous grafts. The desperate need for the production of grafted 3D cartilage tissues as rhinoplasty grafts without the adverse effect is the need of the hour. In the present study, we developed a bioactive 3D histotypic construct engineered with the various ratio of adipose-derived stem cells (ADSC) and chondrocytes together with decellularized porcine nasal cartilage graft (dPNCG). We decellularized porcine nasal cartilage using supercritical carbon dioxide (SCCO2) extraction technology. dPNCG was characterized by H&E, DAPI, alcian blue staining, scanning electron microscopy and residual DNA content, which demonstrated complete decellularization. 3D histotypic constructs were engineered using dPNCG, rat ADSC and chondrocytes with different percentage of cells and cultured for 21 days. dPNCG together with 100% chondrocytes produced a solid mass of 3D histotypic cartilage with significant production of glycosaminoglycans. H&E and alcian blue staining showed an intact mass, with cartilage granules bound to one another by extracellular matrix and proteoglycan, to form a 3D structure. Besides, the expression of chondrogenic markers, type II collagen, aggrecan and SOX-9 were elevated indicating chondrocytes cultured on dPNCG substrate facilitates the synthesis of type II collagen along with extracellular matrix to produce 3D histotypic cartilage. To conclude, dPNCG is an excellent substrate scaffold that might offer a suitable environment for chondrocytes to produce 3D histotypic cartilage. This engineered 3D construct might serve as a promising future candidate for cartilage tissue engineering in rhinoplasty.
Collapse
Affiliation(s)
- Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Regenerative medicine and cell therapy research centre, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Regenerative medicine and cell therapy research centre, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Regenerative medicine and cell therapy research centre, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Che Chen
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | | | - Dar-Jen Hsieh
- Center of Research and Development, ACRO Biomedical Co., Ltd. Kaohsiung, Taiwan
| | - Yi-Chun Yeh
- Center of Research and Development, ACRO Biomedical Co., Ltd. Kaohsiung, Taiwan
| | - Yi-Ping Lai
- Center of Research and Development, ACRO Biomedical Co., Ltd. Kaohsiung, Taiwan
| | - Yun-Nan Lin
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
9
|
Kuhlmann C, Schenck TL, Tluczynski K, Aszodi A, Metzger P, Giunta R, Wiggenhauser PS. Experimental approach to nasal septal cartilage regeneration with adipose tissue-derived stem cells and decellularized porcine septal cartilage. Xenotransplantation 2020; 28:e12660. [PMID: 33350016 DOI: 10.1111/xen.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cartilage shortage is a major problem in facial reconstructive surgery. Prior studies have shown that decellularized porcine nasal septal cartilage (DPNC) seeded with primary human nasal chondrocytes enabled cartilage regeneration and showed potential as a replacement material for nasal cartilage. Since adipose tissue-derived stem cells (ASCs) are easily accessible and almost abundantly available, they appear to be a promising alternative to limited chondrocytes making the combination of DPNC and ASCs a feasible approach towards clinical translation. Thus, this study was intended to investigate the interactions between ASCs and DPNC in an in vitro model. METHODS DPNCs were seeded and 3D-cultured with primary human ASCs that were priorly characterized with trilineage differentiation and flow cytometry. Cell vitality and proliferation were evaluated by Live-Dead, alamarBlue, and PicoGreen assays. Chondrogenic differentiation was examined by DMMB assay and cryosectioning-based histology. Cell invasion within DPNC was visualized and quantified by fluorescent histology (DAPI, Phalloidin). RESULTS ASCs showed good adherence to DPNC and Live-Dead assay proved their viability over 2 weeks. AlamarBlueassay showed an increase in metabolic activity compared to 2D cultures, and PicoGreen assay demonstrated an increase of cell number within DPNC over time. Biochemical assays and histology added evidence of chondrogenic differentiation of 3D-cultured ASCs under the influence of chondrogenic induction medium. Fluorescent image analysis showed a significant increase of cell-occupied areas of scaffolds over time (P < .05). CONCLUSIONS DPNC scaffolds provided a suitable environment for ASCs that allowed good cell vitality, high proliferation, and chondrogenic differentiation. Thus, the use of ASCs and DPNC yields a promising alternative to the use of primary human chondrocytes. For facial cartilage tissue engineering, we regard ASCs as an attractive alternative to human nasal chondrocytes due to their better accessibility and availability. Further research will be necessary to determine long-term effects and in vivo outcomes of ASCs and DPNC in cartilage regeneration of the face.
Collapse
Affiliation(s)
- Constanze Kuhlmann
- Department of Hand Surgery, Plastic Surgery, Aesthetic Surgery, Klinikum der Universität München, Munich, Germany.,Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Klinikum der Universität München, Martiensried, Germany
| | - Thilo Ludwig Schenck
- Department of Hand Surgery, Plastic Surgery, Aesthetic Surgery, Klinikum der Universität München, Munich, Germany
| | - Katharina Tluczynski
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Klinikum der Universität München, Martiensried, Germany
| | - Philipp Metzger
- Division of Clinical Pharmacology and Center of Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, Munich, Germany
| | - Riccardo Giunta
- Department of Hand Surgery, Plastic Surgery, Aesthetic Surgery, Klinikum der Universität München, Munich, Germany
| | - Paul Severin Wiggenhauser
- Department of Hand Surgery, Plastic Surgery, Aesthetic Surgery, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
10
|
Bagher Z, Asgari N, Bozorgmehr P, Kamrava SK, Alizadeh R, Seifalian A. Will Tissue-Engineering Strategies Bring New Hope for the Reconstruction of Nasal Septal Cartilage? Curr Stem Cell Res Ther 2020; 15:144-154. [PMID: 31830895 DOI: 10.2174/1574888x14666191212160757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
The nasal septal cartilage plays an important role in the growth of midface and as a vertical strut preventing the collapse of the nasal bones. The repair of nasal cartilage defects remains a major challenge in reconstructive surgery. The tissue engineering strategy in the development of tissue has opened a new perspective to generate functional tissue for transplantation. Given the poor regenerative properties of cartilage and a limited amount of autologous cartilage availability, intense interest has evoked for tissue engineering approaches for cartilage development to provide better outcomes for patients who require nasal septal reconstruction. Despite numerous attempts to substitute the shapely hyaline cartilage in the nasal cartilages, many significant challenges remained unanswered. The aim of this research was to carry out a critical review of the literature on research work carried out on the development of septal cartilage using a tissue engineering approach, concerning different cell sources, scaffolds and growth factors, as well as its clinical pathway and trials have already been carried out.
Collapse
Affiliation(s)
- Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Negin Asgari
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Parisa Bozorgmehr
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) The London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
11
|
Rickert D, Steinhart H, Lendlein A. Functional requirements for polymeric implant materials in head and neck surgery. Clin Hemorheol Microcirc 2020; 76:179-189. [PMID: 32925016 DOI: 10.3233/ch-209212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pharyngeal reconstruction is a challenging aspect after pharyngeal tumor resection. The pharyngeal passage has to be restored to enable oral alimentation and speech rehabilitation. Several techniques like local transposition of skin, mucosa and/or muscle, regional flaps and free vascularized flaps have been developed to reconstruct pharyngeal defects following surgery, in order to restore function and aesthetics. The reconstruction of the pharynx by degradable, multifunctional polymeric materials would be a novel therapeutical option in head and neck surgery. MATERIALS AND METHODS Samples of an ethylene-oxide sterilized polymer (diameter 10 mm, 200μm thick) were implanted for the reconstruction of a standardized defect of the gastric wall in rats in a prospective study. The stomach is a model for a "worst case" application site to test the stability of the implant material under extreme chemical, enzymatical, bacterial, and mechanical load. RESULTS Fundamental parameters investigated in this animal model were a local tight closure between the polymer and surrounding tissues, histological findings of tissue regeneration and systemic responses to inflammation. A tight anastomosis between the polymer and the adjacent stomach wall was found in all animals after polymer implantation (n = 42). Histologically, a regeneration with glandular epithelium was found in the polymer group. No differences in the systemic responses to inflammation were found between the polymer group (n = 42) and the control group (n = 21) with primary wound closure of the defect of the gastric wall. CONCLUSIONS A sufficient stability of the polymeric material is a requirement for the pharyngeal reconstruction with implant materials.
Collapse
Affiliation(s)
- Dorothee Rickert
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,ENT-clinic, Department of Head and Neck Surgery, Marienhospital Stuttgart, Stuttgart, Germany
| | - Helmut Steinhart
- ENT-clinic, Department of Head and Neck Surgery, Marienhospital Stuttgart, Stuttgart, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
13
|
Shi B, Huang H. Computational technology for nasal cartilage-related clinical research and application. Int J Oral Sci 2020; 12:21. [PMID: 32719336 PMCID: PMC7385163 DOI: 10.1038/s41368-020-00089-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
Surgeons need to understand the effects of the nasal cartilage on facial morphology, the function of both soft tissues and hard tissues and nasal function when performing nasal surgery. In nasal cartilage-related surgery, the main goals for clinical research should include clarification of surgical goals, rationalization of surgical methods, precision and personalization of surgical design and preparation and improved convenience of doctor-patient communication. Computational technology has become an effective way to achieve these goals. Advances in three-dimensional (3D) imaging technology will promote nasal cartilage-related applications, including research on computational modelling technology, computational simulation technology, virtual surgery planning and 3D printing technology. These technologies are destined to revolutionize nasal surgery further. In this review, we summarize the advantages, latest findings and application progress of various computational technologies used in clinical nasal cartilage-related work and research. The application prospects of each technique are also discussed.
Collapse
Affiliation(s)
- Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
14
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
15
|
Comparative Analysis of Adipose-Derived Stromal Cells and Their Secretome for Auricular Cartilage Regeneration. Stem Cells Int 2020; 2020:8595940. [PMID: 32089711 PMCID: PMC7023823 DOI: 10.1155/2020/8595940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stromal cells (ADSCs) can repair auricular cartilage defects. Furthermore, stem cell secretome may also be a promising biological therapeutic option, which is equal to or even superior to the stem cell. We explored the therapeutic efficacies of ADSCs and their secretome in terms of rabbit auricular cartilage regeneration. ADSCs and their secretome were placed into surgically created auricular cartilage defects. After 4 and 8 weeks, the resected auricles were histopathologically and immunohistochemically examined. We used real-time PCR to determine the levels of genes expressing collagen type II, transforming growth factor-β1 (TGF-β1), and insulin-like growth factor-1 (IGF-1). ADSCs significantly improved auricular cartilage regeneration at 4 and 8 weeks, compared to the secretome and PBS groups, as revealed by gross examination, histopathologically and immunohistochemically. ADSCs upregulated the expression of collagen type II, TGF-β1, and IGF-1 more so than did the secretome or PBS. The expression levels of collagen type II and IGF-1 were significantly higher at 8 weeks than at 4 weeks after ADSC injection. Although ADSCs thus significantly enhanced new cartilage formation, their secretome did not. Therefore, ADSCs may be more effective than their secretome in the repair of auricular cartilage defect.
Collapse
|
16
|
Mechanical stimulation promotes the proliferation and the cartilage phenotype of mesenchymal stem cells and chondrocytes co-cultured in vitro. Biomed Pharmacother 2019; 117:109146. [PMID: 31387186 DOI: 10.1016/j.biopha.2019.109146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023] Open
Abstract
Mesenchymal stem cells and chondrocytes are an important source of the cells for cartilage tissue engineering. Therefore, the culture and expansion methods of these cells need to be improved to overcome the aging of chondrocytes and induced chondrogenic differentiation of mesenchymal stem cells. The aim of this study was to expand the cells for cartilage tissue engineering by combining the advantages of growing cells in co-culture and under a mechanically-stimulated environment. Rabbit chondrocytes and co-cultured cells (bone mesenchymal stem cells and chondrocytes) were subjected to cyclic sinusoidal dynamic tensile mechanical stimulationusing the FX-4000 tension system. Chondrocyte proliferation was assayed by flow cytometry and CFSE labeling. The cell cartilage phenotype was determined by detecting GAG, collagen II and TGF-β1 protein expression by ELISA and the Col2α1, TGF-β1 and Sox9 gene expression by RT-PCR. The results show that the co-culture improved both the proliferation ability of chondrocytes and the cartilage phenotype of co-cultured cells. A proper cyclic sinusoidal dynamic tensile mechanical stimulation improved the proliferation ability and cartilage phenotype of chondrocytes and co-cultured cells. These results suggest that the co-culture of mesenchymal stem cells with chondrocytes and proper mechanical stimulation may be an appropriate way to rapidly expand the cells that have an improved cartilage phenotype for cartilage tissue engineering.
Collapse
|
17
|
Lavernia L, Brown WE, Wong BJF, Hu JC, Athanasiou KA. Toward tissue-engineering of nasal cartilages. Acta Biomater 2019; 88:42-56. [PMID: 30794988 DOI: 10.1016/j.actbio.2019.02.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
Nasal cartilage pathologies are common; for example, up to 80% of people are afflicted by deviated nasal septum conditions. Because cartilage provides the supportive framework of the nose, afflicted patients suffer low quality of life. To correct pathologies, graft cartilage is often required. Grafts are currently sourced from the patient's septum, ear, or rib. However, their use yields donor site morbidity and is limited by tissue quantity and quality. Additionally, rhinoplasty revision rates exceed 15%, exacerbating the shortage of graft cartilage. Alternative grafts, such as irradiated allogeneic rib cartilage, are associated with complications. Tissue-engineered neocartilage holds promise to address the limitations of current grafts. The engineering design process may be used to create suitable graft tissues. This process begins by identifying the surgeon's needs. Second, nasal cartilages' properties must be understood to define engineering design criteria. Limited investigations have examined nasal cartilage properties; numerous additional studies need to be performed to examine topographical variations, for example. Third, tissue-engineering processes must be applied to achieve the engineering design criteria. Within the recent past, strategies have frequently utilized human septal chondrocytes. As autologous and allogeneic rib graft cartilage is used, its suitability as a cell source should also be examined. Fourth, quantitative verification of engineered neocartilage is critical to check for successful achievement of the engineering design criteria. Finally, following the FDA paradigm, engineered neocartilage must be orthotopically validated in animals. Together, these steps delineate a path to engineer functional nasal neocartilages that may, ultimately, be used to treat human patients. STATEMENT OF SIGNIFICANCE: Nasal cartilage pathologies are common and lead to greatly diminished quality of life. The ability to correct pathologies is limited by cartilage graft quality and quantity, as well as donor site morbidity and surgical complications, such as infection and resorption. Despite the significance of nasal cartilage pathologies and high rhinoplasty revision rates (15%), little characterization and tissue-engineering work has been performed compared to other cartilages, such as articular cartilage. Furthermore, most work is published in clinical journals, with little in biomedical engineering. Therefore, this review discusses what nasal cartilage properties are known, summarizes the current state of nasal cartilage tissue-engineering, and makes recommendations via the engineering design process toward engineering functional nasal neocartilage to address current limitations.
Collapse
Affiliation(s)
- Laura Lavernia
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA.
| | - Brian J F Wong
- Division of Facial Plastic Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, 1002 Health Sciences Road, Irvine, CA 92617, USA; Department of Biomedical Engineering, University of California Irvine, 1002 Health Sciences Road, Irvine, CA 92617, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697-2715, USA.
| |
Collapse
|
18
|
Cohen BP, Bernstein JL, Morrison KA, Spector JA, Bonassar LJ. Tissue engineering the human auricle by auricular chondrocyte-mesenchymal stem cell co-implantation. PLoS One 2018; 13:e0202356. [PMID: 30356228 PMCID: PMC6200177 DOI: 10.1371/journal.pone.0202356] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/01/2018] [Indexed: 01/21/2023] Open
Abstract
Children suffering from microtia have few options for auricular reconstruction. Tissue engineering approaches attempt to replicate the complex anatomy and structure of the ear with autologous cartilage but have been limited by access to clinically accessible cell sources. Here we present a full-scale, patient-based human ear generated by implantation of human auricular chondrocytes and human mesenchymal stem cells in a 1:1 ratio. Additional disc construct surrogates were generated with 1:0, 1:1, and 0:1 combinations of auricular chondrocytes and mesenchymal stem cells. After 3 months in vivo, monocellular auricular chondrocyte discs and 1:1 disc and ear constructs displayed bundled collagen fibers in a perichondrial layer, rich proteoglycan deposition, and elastin fiber network formation similar to native human auricular cartilage, with the protein composition and mechanical stiffness of native tissue. Full ear constructs with a 1:1 cell combination maintained gross ear structure and developed a cartilaginous appearance following implantation. These studies demonstrate the successful engineering of a patient-specific human auricle using exclusively human cell sources without extensive in vitro tissue culture prior to implantation, a critical step towards the clinical application of tissue engineering for auricular reconstruction.
Collapse
Affiliation(s)
- Benjamin P Cohen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jaime L Bernstein
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Kerry A Morrison
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Jason A Spector
- Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
19
|
Abstract
Simulating natural characteristics and aesthetics in reconstructed ears has provided a complex 3-dimensional puzzle for those treating patients with microtia. Costochondral grafts remain the gold standard for autologous reconstruction. However, other options such as Medpor and prosthetics are indicated depending on patient circumstances and personal choice. Research into tissue engineering offers an alternative method to a traditional surgical approach that may reduce donor-site morbidity. However, tissue engineering for microtia reconstruction brings new challenges such as cell sourcing, promotion of chondrogenesis, scaffold vascularization, and prevention of scaffold contraction. Advancements in 3D printing, nanofiber utilization, stem cell technologies, and decellularization techniques have played significant roles in overcoming these challenges. These recent advancements and reports of a successful clinical-scale study in an immunocompetent animal suggest a promising outlook for future clinical application of tissue engineering for auricular reconstruction.
Collapse
|
20
|
Auricular Cartilage Regeneration with Adipose-Derived Stem Cells in Rabbits. Mediators Inflamm 2018; 2018:4267158. [PMID: 29743810 PMCID: PMC5878874 DOI: 10.1155/2018/4267158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-β1 (TGF-β1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson's trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-β1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo.
Collapse
|
21
|
Pleumeekers MM, Nimeskern L, Koevoet JLM, Karperien M, Stok KS, van Osch GJVM. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS One 2018; 13:e0190744. [PMID: 29489829 PMCID: PMC5830031 DOI: 10.1371/journal.pone.0190744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. METHODS hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. RESULTS The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. CONCLUSIONS This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Collapse
Affiliation(s)
- M. M. Pleumeekers
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - L. Nimeskern
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - J. L. M. Koevoet
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - M. Karperien
- Department of Tissue Regeneration, MIRA-institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - K. S. Stok
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - G. J. V. M. van Osch
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
22
|
Abstract
BACKGROUND Repair of total human ear loss or congenital lack of ears is one of the challenging issues in plastic and reconstructive surgery. OBJECTIVE The aim of the present study was 3D reconstruction of the human ear with cadaveric ear cartilages seeded with human mesenchymal stem cells. METHOD We used cadaveric ear cartilages with preserved perichondrium. The samples were divided into 2 groups: group A (cartilage alone) and group B (cartilage seeded with a mixture of fibrin powder and mesenchymal stem cell [1,000,000 cells/cm] used and implanted in back of 10 athymic rats). After 12 weeks, the cartilages were removed and shape, size, weight, flexibility, and chondrocyte viability were evaluated. P value <0.05 was considered significant. RESULTS In group A, size and weight of cartilages clearly reduced (P < 0.05) and then shape and flexibility (torsion of cartilages in clockwise and counterclockwise directions) were evaluated, which were found to be significantly reduced (P > 0.05). After staining with hematoxylin and eosin and performing microscopic examination, very few live chondrocytes were found in group A. In group B, size and weight of samples were not changed (P < 0.05); the shape and flexibility of samples were well maintained (P < 0.05) and on performing microscopic examination of cartilage samples, many live chondrocytes were found in cartilage (15-20 chondrocytes in each microscopic field). CONCLUSION In samples with human stem cell, all variables (size, shape, weight, and flexibility) were significantly maintained and abundant live chondrocytes were found on performing microscopic examination. This method may be used for reconstruction of full defect of auricles in humans.
Collapse
|
23
|
Morrison KA, Cohen BP, Asanbe O, Dong X, Harper A, Bonassar LJ, Spector JA. Optimizing cell sourcing for clinical translation of tissue engineered ears. Biofabrication 2016; 9:015004. [PMID: 27917821 DOI: 10.1088/1758-5090/9/1/015004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background . Currently, the major impediment to clinical translation of our previously described platform for the fabrication of high fidelity, patient-specific tissue engineered ears is the development of a clinically optimal cell sourcing strategy. A limited autologous auricular chondrocyte (AuC) supply in conjunction with rapid chondrocyte de-differentiation during in vitro expansion currently makes clinical translation more challenging. Mesenchymal stem cells (MSCs) offer significant promise due to their inherent chondrogenic potential, and large availability through minimally invasive procedures. Herein, we demonstrate the promise of AuC/MSC co-culture to fabricate elastic cartilage using 50% fewer AuC than standard approaches. METHODS Bovine auricular chondrocytes (bAuC) and bovine MSC (bMSC) were encapsulated within 10 mg ml-1 type I collagen hydrogels in ratios of bAuC:bMSC 100:0, 50:50, and 0:100 at a density of 25 million cells ml-1 hydrogel. One mm thick collagen sheet gels were fabricated, and thereafter, 8 mm diameter discs were extracted using a biopsy punch. Discs were implanted subcutaneously in the dorsa of nude mice (NU/NU) and harvested after 1 and 3 months. RESULTS Gross analysis of explanted discs revealed bAuC:bMSC co-culture discs maintained their size and shape, and exhibited native auricular cartilage-like elasticity after 1 and 3 months of implantation. Co-culture discs developed into auricular cartilage, with viable chondrocytes within lacunae, copious proteoglycan and elastic fiber deposition, and a distinct perichondrial layer. Biochemical analysis confirmed that co-culture discs deposited critical cartilage molecular components more readily than did both bAuC and bMSC discs after 1 and 3 months, and proteoglycan content significantly increased between 1 and 3 months. CONCLUSION We have successfully demonstrated an innovative cell sourcing strategy that facilitates our efforts to achieve clinical translation of our high fidelity, patient-specific ears for auricular reconstruction utilizing only half of the requisite auricular chondrocytes to fabricate mature elastic cartilage.
Collapse
Affiliation(s)
- Kerry A Morrison
- Laboratory for Bioregenerative Medicine and Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bardsley K, Kwarciak A, Freeman C, Brook I, Hatton P, Crawford A. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials 2016; 112:313-323. [PMID: 27770634 DOI: 10.1016/j.biomaterials.2016.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation. The temporal changes in the genes measured reflected the temporal changes observed in the growth plate. Collagen II gene expression increased 6 fold by day 7 and was then significantly downregulated from day 14 onwards. Conversely, collagen X gene expression was detectable by day 14 and increased 100-fold by day 35. The temporal increase in collagen X expression was mirrored by increases in alkaline phosphatase gene expression which also was detectable by day 14 with a 30-fold increase in gene expression by day 35. Histological and immunohistochemical analysis of the engineered constructs showed increased chondrocyte cell volume (31-45 μm), deposition of collagen X in the extracellular matrix and expression of alkaline phosphatase activity. However, no cartilage mineralisation was observed in in vitro culture of up to 10 weeks. On subcutaneous implantation of the hypertrophic engineered constructs, the grafts became vascularised, cartilage mineralisation occurred and loss of the proteoglycan in the matrix was observed. Implantation of the hypertrophic engineered constructs into a rat cranial defect resulted in angiogenesis, mineralisation and remodelling of the cartilage tissue into bone. Micro-CT analysis indicated that defects which received the engineered hypertrophic constructs showed 38.48% in bone volume compared to 7.01% in the control defects. Development of tissue engineered hypertrophic cartilage to use as a bone graft substitute is an exciting development in regenerative medicine. This is a proof of principal study demonstrating the potential of nasal chondrocytes to engineer hypertrophic cartilage which will remodel into bone on in vivo transplantation. This approach to making engineered hypertrophic cartilage grafts could form the basis of a new potential future clinical treatment for maxillofacial reconstruction.
Collapse
Affiliation(s)
- Katie Bardsley
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK; Guy Hilton Research Centre, University of Keele, Staffordshire, ST4 7QB, UK
| | - Agnieska Kwarciak
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Aviation House, 125 Kingsway, London, WC2B 6NH, UK
| | - Christine Freeman
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Ian Brook
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Paul Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK
| | - Aileen Crawford
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, South Yorkshire, S10 2TA, UK.
| |
Collapse
|