1
|
Tavares DF, Mano JF, Oliveira MB. Advances in abiotic tissue-based biomaterials: A focus on decellularization and devitalization techniques. Mater Today Bio 2025; 32:101735. [PMID: 40275948 PMCID: PMC12020859 DOI: 10.1016/j.mtbio.2025.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
This Review explores the growing and diversifying field of tissue-derived abiotic constructs for tissue engineering applications, with main focus on decellularization and devitalization techniques and principles. Acellular fractions derived from biological tissues, such as the extracellular matrix (ECM), have long been considered a valuable approach for the generation of numerous scaffolds and more complex constructs. The removal of the cellular content has been considered essential to prevent the development of adverse immunological reactions. Nevertheless, the discovery of promising features of certain cellular components has sparked interest in the use of inactivated or devitalized cellular fractions for several applications, particularly in regenerative medicine and inflammation control. Devitalization has been described for several clinical applications, but remains poorly explored in terms of in vitro constructs compared to decellularization methods currently available. In this review, we present and critically evaluate a spectrum of approaches for the decellularization of whole-organs and in vitro constructs, and the most prevalent devitalization techniques, with a discussion on their implications on scaffolds composition, structure, and potentially therapeutic properties. Processing methodologies to achieve optimal cell-based abiotic materials and approaches for their effective characterization are described and discussed. The application of these materials in healthcare, with most focus on regenerative approaches and including examples of commercially available products, is also addressed.
Collapse
Affiliation(s)
- Diana F. Tavares
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B. Oliveira
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Alleviation of cardiac fibrosis using acellular peritoneal matrix-loaded pirfenidone nanodroplets after myocardial infarction in rats. Eur J Pharmacol 2022; 933:175238. [PMID: 36116519 DOI: 10.1016/j.ejphar.2022.175238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Myocardial fibrosis (MF) in the remote myocardium is a feature at the micoscopic level of pathological remodeling after myocardial infarction (MI). Although pirfenidone (PFD), an antifibrotic agent, is commonly used to inhibit fibrosis in multiple organs, its clinical use is limited because of the high doses required for favorable therapeutic outcomes and various side effects. Nanodrug technology has allowed for delayed quantitative drug release and reduced the amount of medication required, improving the treatment strategy for MF. In this study, we investigated the possible therapeutic effect of peritoneal matrix-loaded pirfenidone nanodroplets (NDs) on MI fibrosis. The results showed that the Perfluoropentane-Pirfenidone@Nanodroplets-Polyethylene glycol 2000 (PFP-PFD@NDs-PEG) described in this study was successfully synthesized and demonstrated a high potential for the targeted treatment of MI. The total duration of pirfenidone release from PFP-PFD@NDs-PEG was increased by loading it into an acellular peritoneal matrix (APM). Additionally, pirfenidone inhibited the transformation of cardiac fibroblasts into cardiac myofibroblasts in vitro and reduced the synthesis and secretion of collagen I and collagen III by cardiac myofibroblasts. The combination of the APM with pirfenidone nanodroplets achieved a slow drug release and showed excellent therapeutic effects on fibrosis in MI rats. Our study confirmed the feasibility and synergistic effectiveness of the APM combined with pirfenidone nanodroplets in the treatment of fibrosis in MI rats. Moreover, our technique offers a great potential for applying nanomedicine in other biomedical fields.
Collapse
|
4
|
Fontdevila J, Descarrega J. Invited Discussion On: A Pure Autologous Dermal Graft and Dermal Flap Pocket in Prepectoral Implant Reconstruction After Skin-Reducing Mastectomy: A One-Stage Autologous Reconstruction Alternative to Acellular Dermal Matrices. Aesthetic Plast Surg 2022; 46:1686-1688. [PMID: 35376993 DOI: 10.1007/s00266-022-02870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
|
5
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|