1
|
Siamwala JH, Macias BR, Healey R, Bennett B, Hargens AR. Spaceflight-Associated Vascular Remodeling and Gene Expression in Mouse Calvaria. Front Physiol 2022; 13:893025. [PMID: 35634164 PMCID: PMC9139491 DOI: 10.3389/fphys.2022.893025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Astronauts suffer from a loss of bone mass at a rate of 1.5% per month from lower regions of the body during the course of long-duration (>30 days) spaceflight, a phenomenon that poses important risks for returning crew. Conversely, a gain in bone mass may occur in non-load bearing regions of the body as related to microgravity-induced cephalad fluid shift. Representing non-load bearing regions with mouse calvaria and leveraging the STS-131 (15-day) and BION-M1 (30-day) flights, we examined spatial and temporal calvarial vascular remodeling and gene expression related to microgravity exposure compared between spaceflight (SF) and ground control (GC) cohorts. We examined parasagittal capillary numbers and structures in calvaria from 16 to 23 week-old C57BL/6 female mice (GC, n = 4; SF, n = 5) from STS-131 and 19–20 week-old C57BL/6 male mice (GC, n = 6; SF, n = 6) from BION-M1 using a robust isolectin-IB4 vessel marker. We found that the vessel diameter reduces significantly in mice exposed to 15 days of spaceflight relative to control. Capillarization increases by 30% (SF vs. GC, p = 0.054) in SF mice compared to GC mice. The vessel numbers and diameter remain unchanged in BION-M1 mice calvarial section. We next analyzed the parietal pro-angiogenic (VEGFA) and pro-osteogenic gene (BMP-2, DMP1, RUNX2 and OCN) expression in BION-M1 mice using quantitative RT-PCR. VEGFA gene expression increased 15-fold while BMP-2 gene expression increased 11-fold in flight mice compared to GC. The linkage between vascular morphology and gene expression in the SF conditions suggests that angiogenesis may be important in the regulation of pathological bone growth in non-weight bearing regions of the body. Short-duration microgravity-mediated bone restructuring has implications in planning effective countermeasures for long-duration flights and extraterrestrial human habitation.
Collapse
Affiliation(s)
- Jamila H. Siamwala
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Molecular Physiology, Pharmacology and Biotechnology, Brown University, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
- *Correspondence: Jamila H. Siamwala,
| | - Brandon R. Macias
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
- KBRwyle, Houston, TX, United States
| | - Robert Healey
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Brett Bennett
- Association of Spaceflight Professionals, St. Petersburg, FL, United States
| | - Alan R. Hargens
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
2
|
Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomater 2022; 140:178-189. [PMID: 34875361 DOI: 10.1016/j.actbio.2021.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.
Collapse
|
3
|
Comprehensive and Sequential Gene Expression Analysis of Bone Healing Process Following Er:YAG Laser Ablation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:100-112. [DOI: 10.1089/photob.2020.4833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Anitua E, Troya M, Zalduendo M, Flores J, Tierno R, Alkhraisat MH. The influence of alveolar bone healing degree on its potential as a source of human alveolar bone-derived cells. Ann Anat 2020; 232:151578. [PMID: 32688020 DOI: 10.1016/j.aanat.2020.151578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The concept of bone tissue engineering has emerged as a novel alternative approach that comprises three essential components: osteogenic cells, osteoinductive signals and osteoconductive scaffolds. The low-speed drilling represents a useful and accessible autologous source for human alveolar bone-derived cells (hABCs). The aim of this study was to compare the efficacy of two donor sites (healing sites (HS) and non-augmented healed sites (NAHS)) as a source of hABCs. METHODS Nineteen patients were enrolled in this study. The patients' demographic data were described. Bone type and dental implant location were also determined. The hABCs obtained were characterized. Apoptosis and sclerostin expression in the samples were also assessed with immunohistochemistry. RESULTS The hABCs left earlier the tissue explants of the HS than the NAHS. The proliferation of the hABCs had reached the sub-confluence stage in both groups. Cellular efficacy was not statistically significant between the two groups. The hABCs exhibited osteogenic phenotype as they expressed bone sialoprotein (BSP), osteopontin (OP) and tissue non-specific alkaline phosphatase (TNAP). In both groups, the level and the distribution pattern of apoptotic cells and sclerostin expression were similar. CONCLUSIONS Within the limitations of this study, both HS and NAHS were similarly effective to provide hABCs.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain.
| | - María Troya
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Mar Zalduendo
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Javier Flores
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| |
Collapse
|
5
|
Becerikli M, Jaurich H, Schira J, Schulte M, Döbele C, Wallner C, Abraham S, Wagner JM, Dadras M, Kneser U, Lehnhardt M, Behr B. Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med 2017; 21:2773-2781. [PMID: 28444839 PMCID: PMC5661248 DOI: 10.1111/jcmm.13192] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/09/2017] [Indexed: 01/18/2023] Open
Abstract
It is assumed that the activity of osteoblasts and osteoclasts is decreased in bone tissue of aged individuals. However, detailed investigation of the molecular signature of human bone from young compared to aged individuals confirming this assumption is lacking. In this study, quantitative expression analysis of genes related to osteogenesis and osteoclastogenesis of human cancellous bone derived from the distal radius of young and aged individuals was performed. Furthermore, we additionally performed immunohistochemical stainings. The young group included 24 individuals with an average age of 23.2 years, which was compared to cancellous bone derived from 11 body donators with an average age of 81.0 years. In cancellous bone of young individuals, the osteogenesis-related genes RUNX-2, OSTERIX, OSTEOPONTIN and OSTEOCALCIN were significantly up-regulated compared to aged individuals. In addition, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in cancellous bone of young individuals, as well as the WNT gene family member WNT5a and the matrix metalloproteinases MMP-9. However, quantitative RT-PCR analysis of BMP-2, ALP, FGF-2, CYCLIN-D1, MMP-13, RANK, OSTEOPROTEGERIN and TGFb1 revealed no significant difference. Furthermore, Tartrate-resistant acid phosphatase (TRAP) staining was performed which indicated an increased osteoclast activity in cancellous bone of young individuals. In addition, pentachrome stainings revealed significantly less mineralized bone matrix, more osteoid and an increased bone density in young individuals. In summary, markers related to osteogenesis as well as osteoclastogenesis were significantly decreased in the aged individuals. Thus, the present data extends the knowledge about reduced bone regeneration and healing capacity observed in aged individuals.
Collapse
Affiliation(s)
- Mustafa Becerikli
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Henriette Jaurich
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Jessica Schira
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Matthias Schulte
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Carmen Döbele
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Christoph Wallner
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Stephanie Abraham
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Johannes M. Wagner
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Mehran Dadras
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Ulrich Kneser
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Marcus Lehnhardt
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Björn Behr
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| |
Collapse
|
6
|
Murphy MP, Quarto N, Longaker MT, Wan DC. * Calvarial Defects: Cell-Based Reconstructive Strategies in the Murine Model. Tissue Eng Part C Methods 2017; 23:971-981. [PMID: 28825366 DOI: 10.1089/ten.tec.2017.0230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calvarial defects pose a continued clinical dilemma for reconstruction. Advancements within the fields of stem cell biology and tissue engineering have enabled researchers to develop reconstructive strategies using animal models. We review the utility of various animal models and focus on the mouse, which has aided investigators in understanding cranial development and calvarial bone healing. The murine model has also been used to study regenerative approaches to critical-sized calvarial defects, and we discuss the application of stem cells such as bone marrow-derived mesenchymal stromal cells, adipose-derived stromal cells, muscle-derived stem cells, and pluripotent stem cells to address deficient bone in this animal. Finally, we highlight strategies to manipulate stem cells using various growth factors and inhibitors and ultimately how these factors may prove crucial in future advancements within calvarial reconstruction using native skeletal stem cells.
Collapse
Affiliation(s)
- Matthew P Murphy
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California.,2 Lorry I. Lokey Stem Cell Research Building, Stanford Stem Cell Biology and Regenerative Medicine Institute, Stanford University , Stanford, California
| | - Natalina Quarto
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California.,2 Lorry I. Lokey Stem Cell Research Building, Stanford Stem Cell Biology and Regenerative Medicine Institute, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California
| |
Collapse
|
7
|
Inagaki Y, Hookway ES, Kashima TG, Munemoto M, Tanaka Y, Hassan AB, Oppermann U, Athanasou NA. Sclerostin expression in bone tumours and tumour-like lesions. Histopathology 2016; 69:470-8. [PMID: 26896083 DOI: 10.1111/his.12953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
AIMS To assess the immunophenotypic and mRNA expression of sclerostin in human skeletal tissues and in a wide range of benign and malignant bone tumours and tumour-like lesions. METHODS AND RESULTS Sclerostin expression was evaluated by immunohistochemistry and quantitative polymerase chain reaction (PCR). In lamellar and woven bone, there was strong sclerostin expression by osteocytes. Osteoblasts and other cell types in bone were negative. Hypertrophic chondrocytes in the growth plate and mineralized cartilage cells in zone 4 of hyaline articular cartilage strongly expressed sclerostin, but most chondrocytes in hyaline cartilage were negative. In primary bone-forming tumours, including osteosarcomas, there was patchy expression of sclerostin in mineralized osteoid and bone. Sclerostin staining was seen in woven bone in fibrous dysplasia, in osteofibrous dysplasia, and in reactive bone formed in fracture callus, in myositis ossificans, and in the wall of solitary bone cysts and aneurysmal bone cysts. Sclerostin was expressed by hypertrophic chondrocytes in osteochondroma and chondroblasts in chondroblastoma, but not by tumour cells in other bone tumours, including myeloma and metastatic carcinoma. mRNA expression of sclerostin was identified by quantitative PCR in osteosarcoma specimens and cell lines. CONCLUSIONS Sclerostin is an osteocyte marker that is strongly expressed in human woven and lamellar bone and mineralizing chondrocytes. This makes it a useful marker with which to identify benign and malignant osteogenic tumours and mineralizing cartilage tumours, such as chondroblastomas and other lesions in which there is bone formation.
Collapse
Affiliation(s)
- Yusuke Inagaki
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.,Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Edward S Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Takeshi G Kashima
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Mitsuru Munemoto
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.,Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Andrew Bassim Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | - Nick A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| |
Collapse
|