1
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Anand S, Desai V, Alsmadi N, Kanneganti A, Nguyen DHT, Tran M, Patil L, Vasudevan S, Xu C, Hong Y, Cheng J, Keefer E, Romero-Ortega MI. Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Sci Rep 2017; 7:14323. [PMID: 29085079 PMCID: PMC5662603 DOI: 10.1038/s41598-017-14331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022] Open
Abstract
Neural interfaces are designed to decode motor intent and evoke sensory precepts in amputees. In peripheral nerves, recording movement intent is challenging because motor axons are only a small fraction compared to sensory fibers and are heterogeneously mixed particularly at proximal levels. We previously reported that pain and myelinated axons regenerating through a Y-shaped nerve guide with sealed ends, can be modulated by luminar release of nerve growth factor (NGF) and neurotrophin-3 (NT-3), respectively. Here, we evaluate the differential potency of NGF, glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), pleiotrophin (PTN), and NT-3 in asymmetrically guiding the regeneration of sensory and motor neurons. We report that, in the absence of distal target organs, molecular guidance cues can mediate the growth of electrically conductive fascicles with normal microanatomy. Compared to Y-tube compartments with bovine serum albumin (BSA), GDNF and NGF increased the motor and sensory axon content, respectively. In addition, the sensory to motor ratio was significantly increased by PTN (12.7:1) when compared to a BDNF + GDNF choice. The differential content of motor and sensory axons modulated by selective guidance cues may provide a strategy to better define axon types in peripheral nerve interfaces.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Vidhi Desai
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Nesreen Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Aswini Kanneganti
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Dianna Huyen-Tram Nguyen
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Martin Tran
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Lokesh Patil
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Jonathan Cheng
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Edward Keefer
- Nerves Incorporated, P.O. Box 141295, Dallas, TX 75214, USA
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Hsieh YL, Kan HW, Chiang H, Lee YC, Hsieh ST. Distinct TrkA and Ret modulated negative and positive neuropathic behaviors in a mouse model of resiniferatoxin-induced small fiber neuropathy. Exp Neurol 2017; 300:87-99. [PMID: 29106982 DOI: 10.1016/j.expneurol.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Neurotrophic factors and their corresponding receptors play key roles in the maintenance of different phenotypic dorsal root ganglion (DRG) neurons, the axons of which degenerate in small fiber neuropathy, leading to various neuropathic manifestations. Mechanisms underlying positive and negative symptoms of small fiber neuropathy have not been systematically explored. This study investigated the molecular basis of these seemingly paradoxical neuropathic behaviors according to the profiles of TrkA and Ret with immunohistochemical and pharmacological interventions in a mouse model of resiniferatoxin (RTX)-induced small fiber neuropathy. Mice with RTX neuropathy exhibited thermal hypoalgesia and mechanical allodynia, reduced skin innervation, and altered DRG expression profiles with decreased TrkA(+) neurons and increased Ret(+) neurons. RTX neuropathy induced the expression of activating transcription factor 3 (ATF3), and ATF3(+) neurons were colocalized with Ret but not with TrkA (P<0.001). As a neuroprotectant, 4-Methylcatechol (4MC) promoted skin reinnervation partially with correlated reversal of the neuropathic behaviors and altered neurochemical expression. Gambogic amide, a selective TrkA agonist, normalized thermal hypoalgesia, and GW441756, a TrkA kinase inhibitor, induced thermal hypoalgesia, which was already reversed by 4MC. Mechanical allodynia was reversed by a Ret kinase inhibitor, AST487, which induced thermal hyperalgesia in naïve mice. The activation of Ret signaling by XIB4035 induced mechanical allodynia and thermal hypoalgesia in RTX neuropathy mice in which the neuropathic behaviors were previously normalized by 4MC. Distinct neurotrophic factor receptors, TrkA and Ret, accounted for negative and positive neuropathic behaviors in RTX-induced small fiber neuropathy, respectively: TrkA for thermal hypoalgesia and Ret for mechanical allodynia and thermal hypoalgesia.
Collapse
Affiliation(s)
- Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan; Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
4
|
Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, Lin BS, Miaw SC, Pan CL, Chao CC, Hsieh ST. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep 2016; 6:35612. [PMID: 27748450 PMCID: PMC5066268 DOI: 10.1038/srep35612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection.
Collapse
Affiliation(s)
- Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jung-Hsien Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cho-Min Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Luke Chellis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Bo-Shiou Lin
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shi-Chuen Miaw
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Liang Pan
- Department of Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10002, Taiwan
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Clinical Center for Neuroscience and Behavior, National Taiwan University Hospital, Taipei, Taiwan
- Department of Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| |
Collapse
|
5
|
Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue–Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration–Approved Nerve Conduit. Plast Reconstr Surg 2016; 138:132-139. [DOI: 10.1097/prs.0000000000002291] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Dong Y, Zhao H, Yang L, Zhao Y, Ma C, Zhang C. Effects of Neurotrophin-3 Plasmids on Myocyte Apoptosis and Ca2+-ATPase Content in the Muscle After Nerve Injury in Rats. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tseng TJ, Hsiao TH, Hsieh ST, Hsieh YL. Determinants of nerve conduction recovery after nerve injuries: Compression duration and nerve fiber types. Muscle Nerve 2015; 52:107-12. [PMID: 25362849 DOI: 10.1002/mus.24501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The aims of this study were to determine the influences of: (1) timing of nerve decompression; and (2) nerve fiber types on the patterns of nerve conduction studies (NCS) after nerve injury. METHODS Nerve conduction studies (NCS) were performed on 3 models of nerve injury: (1) crush injury due to transient nerve compression (crush group); (2) chronic constriction injury (CCI), or permanent compression (CCI group); and (3) CCI with removal of ligatures, or delayed nerve decompression (De-CCI group). RESULTS There were distinct patterns of NCS recovery. The crush and De-CCI groups achieved similar motor nerve recovery, better than that of the CCI group. In contrast, recovery of sensory nerves was limited in the CCI and De-CCI groups and was lower than in the crush group. CONCLUSIONS Immediate relief of compression resulted in the best recovery of motor and sensory nerve conduction. In contrast, delayed decompression restored only motor nerve conduction.
Collapse
Affiliation(s)
- To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tin-Hsin Hsiao
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| |
Collapse
|
8
|
Skilleter AJ, Weickert CS, Vercammen A, Lenroot R, Weickert TW. Peripheral BDNF: a candidate biomarker of healthy neural activity during learning is disrupted in schizophrenia. Psychol Med 2015; 45:841-854. [PMID: 25162472 PMCID: PMC4413857 DOI: 10.1017/s0033291714001925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptogenesis and synaptic plasticity underlying learning. However, a relationship between circulating BDNF levels and brain activity during learning has not been demonstrated in humans. Reduced brain BDNF levels are found in schizophrenia and functional neuroimaging studies of probabilistic association learning in schizophrenia have demonstrated reduced activity in a neural network that includes the prefrontal and parietal cortices and the caudate nucleus. We predicted that brain activity would correlate positively with peripheral BDNF levels during probabilistic association learning in healthy adults and that this relationship would be altered in schizophrenia. METHOD Twenty-five healthy adults and 17 people with schizophrenia or schizo-affective disorder performed a probabilistic association learning test during functional magnetic resonance imaging (fMRI). Plasma BDNF levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS We found a positive correlation between circulating plasma BDNF levels and brain activity in the parietal cortex in healthy adults. There was no relationship between plasma BDNF levels and task-related activity in the prefrontal, parietal or caudate regions in schizophrenia. A direct comparison of these relationships between groups revealed a significant diagnostic difference. CONCLUSIONS This is the first study to show a relationship between peripheral BDNF levels and cortical activity during learning, suggesting that plasma BDNF levels may reflect learning-related brain activity in healthy humans. The lack of relationship between plasma BDNF and task-related brain activity in patients suggests that circulating blood BDNF may not be indicative of learning-dependent brain activity in schizophrenia.
Collapse
Affiliation(s)
- A. J. Skilleter
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - C. S. Weickert
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - A. Vercammen
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - R. Lenroot
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - T. W. Weickert
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| |
Collapse
|
9
|
Repair of the Peripheral Nerve-Remyelination that Works. Brain Sci 2013; 3:1182-97. [PMID: 24961524 PMCID: PMC4061866 DOI: 10.3390/brainsci3031182] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential for the outcome of the repair process. The review starts with a description of the current state of knowledge about the initial events after injury, followed by Wallerian degeneration, and subsequent regeneration. The importance of surgical repair, carried out as soon as possible to increase the chances of a good outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research in this area is needed in order to perfect the outcome.
Collapse
|