1
|
Guasp P, Alvarez-Navarro C, Gomez-Molina P, Martín-Esteban A, Marcilla M, Barnea E, Admon A, López de Castro JA. The Peptidome of Behçet's Disease-Associated HLA-B*51:01 Includes Two Subpeptidomes Differentially Shaped by Endoplasmic Reticulum Aminopeptidase 1. Arthritis Rheumatol 2016; 68:505-15. [PMID: 26360328 DOI: 10.1002/art.39430] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To characterize the peptidome of the Behçet's disease-associated HLA-B*51:01 allotype as well as the differential features of major peptide subsets and their distinct endoplasmic reticulum aminopeptidase 1 (ERAP-1)-mediated processing. METHODS The endogenous B*51:01-bound peptidome was characterized from 721.221 transfectant cells, after affinity chromatography and acid extraction, by tandem mass spectrometry. Recombinant ERAP-1 variants were used to digest synthetic B*51:01 ligands. HLA and transporter associated with antigen processing (TAP) binding affinities of peptide ligands were calculated with well-established algorithms. ERAP-1 and ERAP-2 from 721.221 cells were characterized by genomic sequencing and Western blotting. RESULTS The B*51:01 peptidome consisted of 29.5% octamers, 61.7% nonamers, 4.8% decamers, and 4.0% longer peptides. The major peptide motif consisted of Pro and Ala at position 2, aliphatic/aromatic position 3 residues, and Val and Ile at the C-terminal position. The ligands with Pro or Ala at position 2 constituted 2 distinct subpeptidomes. Peptides with Pro at position 2 showed higher affinity for B*51:01 and lower affinity for TAP than those with Ala at position 2. Most important, both peptide subsets differed drastically in the susceptibility of their position 1 residues to ERAP-1, revealing a distinct influence of this enzyme on both subpeptidomes, which may alter their balance, affecting the global affinity of B*51:01-peptide complexes. CONCLUSION ERAP-1 has a significant influence on the B*51:01 peptidome and its affinity. This influence is based on very distinct effects on the 2 subpeptidomes, whereby only peptides in the subpeptidome with Ala at position 2 are extensively destroyed, except when their position 1 residues are ERAP-1 resistant. This pattern provides a mechanism for the epistatic association of ERAP-1 and B*51:01 in Behçet's disease.
Collapse
Affiliation(s)
- Pablo Guasp
- CSIC, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | | | | | | | | | - Eilon Barnea
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
2
|
Martin E, Carlson JM, Le AQ, Chopera DR, McGovern R, Rahman MA, Ng C, Jessen H, Kelleher AD, Markowitz M, Allen TM, Milloy MJ, Carrington M, Wainberg MA, Brumme ZL. Early immune adaptation in HIV-1 revealed by population-level approaches. Retrovirology 2014; 11:64. [PMID: 25212686 PMCID: PMC4190299 DOI: 10.1186/s12977-014-0064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The reproducible nature of HIV-1 escape from HLA-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms "at the population level" - that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association. However, elucidating their timing of selection traditionally requires detailed longitudinal studies, which are challenging to undertake on a large scale. We investigate whether the extent and relative timecourse of immune-driven HIV adaptation can be inferred via comparative cross-sectional analysis of independent early and chronic infection cohorts. RESULTS Similarly-powered datasets of linked HLA/HIV-1 genotypes from individuals with early (median < 3 months) and chronic untreated HIV-1 subtype B infection, matched for size (N > 200/dataset), HLA class I and HIV-1 Gag/Pol/Nef diversity, were established. These datasets were first used to define a list of 162 known HLA-associated polymorphisms detectable at the population level in cohorts of the present size and host/viral genetic composition. Of these 162 known HLA-associated polymorphisms, 15% (occurring at 14 Gag, Pol and Nef codons) were already detectable via statistical association in the early infection dataset at p ≤ 0.01 (q < 0.2) - identifying them as the most consistently rapidly escaping sites in HIV-1. Among these were known rapidly-escaping sites (e.g. B*57-Gag-T242N) and others not previously appreciated to be reproducibly rapidly selected (e.g. A*31:01-associated adaptations at Gag codons 397, 401 and 403). Escape prevalence in early infection correlated strongly with first-year escape rates (Pearson's R = 0.68, p = 0.0001), supporting cross-sectional parameters as reliable indicators of longitudinally-derived measures. Comparative analysis of early and chronic datasets revealed that, on average, the prevalence of HLA-associated polymorphisms more than doubles between these two infection stages in persons harboring the relevant HLA (p < 0.0001, consistent with frequent and reproducible escape), but remains relatively stable in persons lacking the HLA (p = 0.15, consistent with slow reversion). Published HLA-specific Hazard Ratios for progression to AIDS correlated positively with average escape prevalence in early infection (Pearson's R = 0.53, p = 0.028), consistent with high early within-host HIV-1 adaptation (via rapid escape and/or frequent polymorphism transmission) as a correlate of progression. CONCLUSION Cross-sectional host/viral genotype datasets represent an underutilized resource to identify reproducible early pathways of HIV-1 adaptation and identify correlates of protective immunity.
Collapse
Affiliation(s)
- Eric Martin
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| | | | - Anh Q Le
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Denis R Chopera
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rachel McGovern
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| | - Manal A Rahman
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Carmond Ng
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| | | | | | - Martin Markowitz
- />Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY USA
| | - Todd M Allen
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA USA
| | - M-J Milloy
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
- />Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Mary Carrington
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA USA
- />Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | | | - Zabrina L Brumme
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| |
Collapse
|