1
|
Fratoni AJ, Gethers ML, Nicolau DP, Kuti JL. Non-KPC Attributes of Newer β-lactam/β-lactamase Inhibitors, Part 1: Enterobacterales and Pseudomonas aeruginosa. Clin Infect Dis 2024; 79:33-42. [PMID: 38306487 DOI: 10.1093/cid/ciae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of β-lactamases. The early β-lactamase inhibitors (BLIs) are characterized by spectra limited to class A β-lactamases and ineffective against carbapenemases and most extended spectrum β-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Matthew L Gethers
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
2
|
Wang Y, Li H, Wang D, Li Y, Shen Y, Fu Y, Li Y, Gao M, Zhang D. Changes of PK/PD of Meropenem in patients with abdominal septic shock and exploration of clinical rational administration plan: a prospective exploratory study. Sci Rep 2024; 14:10173. [PMID: 38702351 PMCID: PMC11068909 DOI: 10.1038/s41598-024-60909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
This study aimed to explore the changes of pharmacokinetic parameters after meropenem in patients with abdominal septic shock after gastrointestinal perforation, and to simulate the probability of different dosing regimens achieving different pharmacodynamic goals. The study included 12 patients, and utilized high performance liquid chromatography-tandem mass spectrometry to monitor the plasma concentration of meropenem. The probability of target attainment (PTA) for different minimum inhibitory concentration (MIC) values and %fT > 4MIC was compared among simulated dosing regimens. The results showed that in 96 blood samples from 12 patients, the clearance (CL) of meropenem in the normal and abnormal creatinine clearance subgroups were 7.7 ± 1.8 and 4.4 ± 1.1 L/h, respectively, and the apparent volume of distribution (Vd) was 22.6 ± 5.1 and 17.2 ± 5.8 L, respectively. 2. Regardless of the subgroup, 0.5 g/q6h infusion over 6 h regimen achieved a PTA > 90% when MIC ≤ 0.5 mg/L. 1.0 g/q6h infusion regimen compared with other regimen, in most cases, the probability of making PTA > 90% is higher. For patients at low MIC, 0.5 g/q6h infusion over 6 h may be preferable. For patients at high MIC, a dose regimen of 1.0 g/q6 h infusion over 6 h may be preferable. Further research is needed to confirm this exploratory result.
Collapse
Affiliation(s)
- Youquan Wang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | - Hongxiang Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | - Dongxia Wang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | - Yuting Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | | | - Yao Fu
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | - Yanhua Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | - Meng Gao
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China
| | - Dong Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Chaoyang District, Changchun City, 130021, Jilin Province, China.
| |
Collapse
|
3
|
Allend SO, Oliveira Garcia M, da Cunha KF, de Albernaz DTF, Panagio LA, Nakazaro G, Reis GF, Oliveira TL, Neto ACPS, Hartwig DD. The synergic and addictive activity of biogenic silver nanoparticle associated with meropenem against carbapenem-resistant Acinetobacter baumannii. J Appl Microbiol 2024; 135:lxae046. [PMID: 38383758 DOI: 10.1093/jambio/lxae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS Antibiotic management of infections caused by Acinetobacter baumannii often fails due to antibiotic resistance (especially to carbapenems) and biofilm-forming strains. Thus, the objective here was to evaluate in vitro the antibacterial and antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) combined with meropenem, against multidrug-resistant isolates of A. baumannii. METHODS AND RESULTS In this study, A. baumannii ATCC® 19606™ and four carbapenem-resistant A. baumannii (Ab) strains were used. The antibacterial activity of Bio-AgNP and meropenem was evaluated through broth microdilution. The effect of the Bio-AgNP association with meropenem was determined by the checkboard method. Also, the time-kill assay and the integrity of the bacterial cell membrane were evaluated. Furthermore, the antibiofilm activity of Bio-AgNP and meropenem alone and in combination was determined. Bio-AgNP has antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration ranging from 0.46 to 1.87 μg ml-1. The combination of Bio-AgNP and meropenem showed a synergistic and additive effect against Ab strains, and Bio-AgNP was able to reduce the MIC of meropenem from 4- to 8-fold. Considering the time-kill of the cell, meropenem and Bio-AgNP when used in combination reduced bacterial load to undetectable levels within 10 min to 24 h after treatment. Protein leakage was observed in all treatments evaluated. When combined, meropenem/Bio-AgNP presents biofilm inhibition for Ab2 isolate and ATCC® 19606™, with 21% and 19%, and disrupts the biofilm from 22% to 50%, respectively. The increase in nonviable cells in the biofilm can be observed after treatment with Bio-AgNP and meropenem in carbapenem-resistant A. baumannii strains. CONCLUSIONS The combination of Bio-AgNP with meropenem can be a therapeutic option in the treatment of infections caused by carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Suzane Olachea Allend
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Marcelle Oliveira Garcia
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Kamila Furtado da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Déborah Trota Farias de Albernaz
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | | | - Gerson Nakazaro
- Department of Microbiology, State University of Londrina, CEP 86057-970 Londrina, PR, Brazil
| | - Guilherme Fonseca Reis
- Department of Microbiology, State University of Londrina, CEP 86057-970 Londrina, PR, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Nucleus, Technological Development Center, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
4
|
Asempa TE, Kois AK, Gill CM, Nicolau DP. Phenotypes, genotypes and breakpoints: an assessment of β-lactam/β-lactamase inhibitor combinations against OXA-48. J Antimicrob Chemother 2023; 78:636-645. [PMID: 36626311 DOI: 10.1093/jac/dkac425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Two of the three recently approved β-lactam agent (BL)/β-lactamase inhibitor (BLI) combinations have higher CLSI susceptibility breakpoints (ceftazidime/avibactam 8 mg/L; meropenem/vaborbactam 4 mg/L) compared with the BL alone (ceftazidime 4 mg/L; meropenem 1 mg/L). This can lead to a therapeutic grey area on susceptibility reports depending on resistance mechanism. For instance, a meropenem-resistant OXA-48 isolate (MIC 4 mg/L) may appear as meropenem/vaborbactam-susceptible (MIC 4 mg/L) despite vaborbactam's lack of OXA-48 inhibitory activity. METHODS OXA-48-positive (n = 51) and OXA-48-negative (KPC, n = 5; Klebsiella pneumoniae wild-type, n = 1) Enterobacterales were utilized. Susceptibility tests (broth microdilution) were conducted with ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam, as well as their respective BL partner. Antimicrobial activity of all six agents was evaluated in the murine neutropenic thigh model using clinically relevant exposures. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0 h controls. RESULTS On average, the three BL/BLI agents resulted in robust bacteria killing among OXA-48-negative isolates. Among OXA-48-positive isolates, poor in vivo activity with imipenem/relebactam was concordant with its resistant phenotypic profile. Variable meropenem/vaborbactam activity was observed among isolates with a 'susceptible' MIC of 4 mg/L. Only 30% (7/23) of isolates at meropenem/vaborbactam MICs of 2 and 4 mg/L met the ≥1-log bacterial reduction threshold predictive of clinical efficacy in serious infections. In contrast, ceftazidime/avibactam resulted in marked bacterial density reduction across the range of MICs, and 96% (49/51) of isolates exceeded the ≥1-log bacterial reduction threshold. CONCLUSIONS Data demonstrate that current imipenem/relebactam and ceftazidime/avibactam CLSI breakpoints are appropriate. Data also suggest that higher meropenem/vaborbactam breakpoints relative to meropenem can translate to potentially poor clinical outcomes in patients infected with OXA-48-harbouring isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Abigail K Kois
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
5
|
Kaye KS, Naas T, Pogue JM, Rossolini GM. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect Dis Ther 2023; 12:777-806. [PMID: 36847998 PMCID: PMC10017908 DOI: 10.1007/s40121-023-00773-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) remain a significant public health threat, and, despite recent approvals, new antibiotics are needed. Severe infections caused by CRE, such as nosocomial pneumonia and bloodstream infections, are associated with a relatively high risk of morbidity and mortality. The recent approval of ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, plazomicin, eravacycline and cefiderocol has broadened the armamentarium for the treatment of patients with CRE infections. Cefiderocol is a siderophore cephalosporin with overall potent in vitro activity against CRE. It is taken up via iron transport channels through active transport, with some entry into bacteria through traditional porin channels. Cefiderocol is relatively stable against hydrolysis by most serine- and metallo-beta-lactamases, including KPC, NDM, VIM, IMP and OXA carbapenemases-the most frequent carbapenemases detected in CRE. The efficacy and safety of cefiderocol has been demonstrated in three randomised, prospective, parallel group or controlled clinical studies in patients at risk of being infected by multidrug-resistant or carbapenem-resistant Gram-negative bacteria. This paper reviews the in vitro activity, emergence of resistance, preclinical effectiveness, and clinical experience for cefiderocol, and its role in the management of patients with CRE infections.
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, CEA, University Paris-Saclay, Translational Research Building, Faculty of Medicine, Hopital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, and Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
6
|
Qian C, Wu Q, Ruan Z, Liu F, Li W, Shi W, Ma L, Peng D, Yin H, Yao L, Li Z, Hong M, Xia L. A Visualized Mortality Prediction Score Model in Hematological Malignancies Patients with Carbapenem-Resistant Organisms Bloodstream Infection. Infect Drug Resist 2023; 16:201-215. [PMID: 36644657 PMCID: PMC9833326 DOI: 10.2147/idr.s393932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Background Bloodstream infection (BSI) due to carbapenem-resistant organisms (CROs) has emerged as a worldwide problem associated with high mortality. This study aimed to evaluate the risk factors associated with mortality in HM patients with CROs BSI and to establish a scoring model for early mortality prediction. Methods We conducted a retrospective cohort study at our hematological department from January 2018 to December 2021, including all HM patients with CROs BSI. The outcome measured was death within 30-day of BSI onset. Survivor and non-survivor subgroups were compared to identify predictors of mortality. Univariate and multivariate Cox regression analyses were used to identify prognostic risk factors and develop a nomogram. Results In total, 150 HM patients were included in the study showing an overall 30-day mortality rate of 56%. Klebsiella pneumonia was the dominant episode. Cox regression analysis showed that pre-infection length of stay was >14 days (score 41), Pitt score >4 (score 100), mucositis (score 41), CAR (The ratio of C-reactive protein to albumin) >8.8 (score 57), early definitive therapy (score 44), and long-duration (score 78) were positive independent risk predictors associated with 30-day mortality, all of which were selected into the nomogram. Furthermore, all patients were divided into the high-risk group (≥160 points) or the low-risk group based on the prediction score model. The mortality of the high-risk group was 8 times more than the low-risk group. Kaplan-Meier analysis showed that empirical polymyxin B therapy was associated with a lower 30-day mortality rate, which was identified as a good prognostic factor in the high-risk group. In comparison, empirical carbapenems and tigecycline were poor prognostic factors in a low-risk group. Conclusion Our score model can accurately predict 30-day mortality in HM patients with CROs BSI. Early administration of CROs-targeted therapy in the high-risk group is strongly recommended to decrease mortality.
Collapse
Affiliation(s)
- Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zhixuan Ruan
- Faculty of Natural, Mathematical and Engineering Sciences, King’s College, London, UK
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Weiming Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zixuan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China,Correspondence: Mei Hong; Linghui Xia, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No. 1277, Wuhan, Hubei Province, People’s Republic of China, Tel +8613037137937; +8618627733999, Email ;
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Cai D, Ouyang X, He H, Liu Y, Zou J, Chen Z, Wu B, Wu H, Liu D. Cascade filtration and droplet digital detection integrated microfluidic assay enables isolating culture-free phenotypic identification of carbapenem-resistant organisms. Biosens Bioelectron 2023; 220:114863. [DOI: 10.1016/j.bios.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
8
|
Empirical antibiotic therapy for difficult-to-treat Gram-negative infections: when, how, and how long? Curr Opin Infect Dis 2022; 35:568-574. [PMID: 36206149 DOI: 10.1097/qco.0000000000000884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To discuss empirical therapy for severe infections due to Gram-negative bacteria with difficult-to-treat resistance (GNB-DTR) in current clinical practice, focusing in particular on the positioning of novel therapeutic agents and rapid diagnostic tests. RECENT FINDINGS The current era of novel agents active against GNB-DTR and showing differential activity against specific determinants of resistance is an unprecedented scenario, in which the clinical reasoning leading to the choice of the empirical therapy for treating severe GNB-DTR infections is becoming more complex, but it also allows for enhanced treatment precision. SUMMARY Novel agents should be used in line with antimicrobial stewardship principles, aimed at reducing selective pressure for antimicrobial resistance. However, this does not mean that they should not be used. Indeed, excesses in restrictive uses may be unethical by precluding access to the most effective and less toxic treatments for patients with severe GNB-DTR infections. Given these premises (the 'how'), empirical treatment with novel agents should be considered in all patients with risk factors for GNB-DTR and severe clinical presentation of acute infection (the 'when'). Furthermore, empirical novel agents should preferably be continued only for a few hours, until de-escalation, modification, or confirmation (as targeted therapy) is made possible by the results of rapid diagnostic tests (the 'how long').
Collapse
|
9
|
Nayak G, Behera B, Mohanty S, Kar P, Jena J. Analysis of In Vitro Activity of Cefiderocol Against Carbapenem-Resistant Gram-Negative Bacilli by Broth Microdilution and Disk Diffusion Method: A Single-Center Study in Odisha, India. Infect Drug Resist 2022; 15:5887-5897. [PMID: 36237292 PMCID: PMC9553237 DOI: 10.2147/idr.s378579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cefiderocol (CFDC), a novel semi-synthetic siderophore cephalosporin has been developed to combat the menace of infections caused by carbapenem-resistant Gram-negative bacilli (CR-GNB) including Carbapenem-resistant Enterobacterales (CRE) and Carbapenem-resistant Nonfermenting Gram-negative bacilli (CR-NFGNB). Methods We determined the in vitro activity of CFDC against a contemporary collection of 503 CR-GNB isolates by the reference broth microdilution method (BMD) using Iron depleted cation adjusted Mueller-Hinton broth (ID-CAMHB). Performance of CFDC disk diffusion (DD) was evaluated against the reference BMD, as an alternative convenient testing method. Molecular characterization of carbapenemase in CR-GNB was performed by PCR targeting bla NDM-1, bla OXA-48like alleles, bla KPC, bla IMP, and, bla VIM. Minimum inhibitory concentration (MIC) distribution of CFDC in CR-GNB harbouring different carbapenemase enzymes was also analyzed. Results In our study, 81.7% (411/503) of CR-GNB isolates [81.3%, (278/342) CRE and 82.6% (133/161) CR-NFGNB] were susceptible to CFDC (p>0.05). Categorical agreement (CA) of DD ranged from 79.8% to 87.5%, Minor error (mE) ranged from 0 to 14%, Major error (ME) ranged from 0 to 3.5%, and Very Major error (VME) ranged from 0 to 12.5% with variations by species tested. Overall CFDC MIC50 and MIC90 values of CR-GNB isolates without any carbapenemase genes were higher as compared to those with the presence of carbapenemase genes (4 µg/mL and 128 µg/mL versus 2 µg/mL and 16 µg/mL respectively). Discussion CFDC is not yet available for clinical use in India. Hence, multicentric studies are the need of the hour in India for standardization of CFDC susceptibility using disks and CAMHB from different manufacturers as well as understanding mechanisms of high MIC values.
Collapse
Affiliation(s)
- Gayatree Nayak
- Department of Microbiology, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha, 751019, India
| | - Bijayini Behera
- Department of Microbiology, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha, 751019, India,Correspondence: Bijayini Behera, Department of Microbiology, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha, 751019, India, Tel +07750847562, Email
| | - Srujana Mohanty
- Department of Microbiology, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha, 751019, India
| | - Punyatoya Kar
- Department of Microbiology, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha, 751019, India
| | - Jayanti Jena
- Department of Microbiology, All India Institute of Medical Sciences [AIIMS], Bhubaneswar, Odisha, 751019, India
| |
Collapse
|
10
|
Asempa TE, Kois AK, Gill CM, Nicolau DP. Phenotypes, genotypes and breakpoints: an assessment of β-lactam/ β-lactamase inhibitor combinations against OXA-48. J Antimicrob Chemother 2022; 77:2622-2631. [PMID: 35325165 DOI: 10.1093/jac/dkac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Two out of the three recently approved β-lactam (BL)/β-lactamase inhibitors (BLIs) have higher CLSI susceptibility breakpoints (ceftazidime/avibactam 8 mg/L; meropenem/vaborbactam 4 mg/L) compared with the BL alone (ceftazidime 4 mg/L; meropenem 1 mg/L). This can lead to a therapeutic grey area on susceptibility reports depending on resistance mechanism. For instance, a meropenem-resistant OXA-48 isolate (MIC 4 mg/L) may appear as meropenem/vaborbactam-susceptible (MIC 4 mg/L) despite vaborbactam's lack of OXA-48 inhibitory activity. METHODS OXA-48-positive (n = 51) and OXA-48-negative (KPC, n = 5; Klebsiella pneumoniae WT, n = 1) Enterobacterales were utilized. Susceptibility tests (broth microdilution) were conducted with ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam, as well as their respective BL partner. Antimicrobial activity of all six agents was evaluated in the murine neutropenic thigh model using clinically relevant exposures. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0 h controls. RESULTS On average, the three BL/BLI agents resulted in robust bacteria killing among OXA-48-negative isolates. Among OXA-48-positive isolates, poor in vivo activity with imipenem/relebactam was concordant with its resistant phenotypic profile. Variable meropenem/vaborbactam activity was observed among isolates with a 'susceptible' MIC of 4 mg/L. Only 30% (7/23) of isolates at meropenem/vaborbactam MICs of 2 and 4 mg/L met the ≥1 log bacterial reduction threshold predictive of clinical efficacy in serious infections. In contrast, ceftazidime/avibactam resulted in marked bacterial density reduction across the range of MICs and 73% (37/51) of isolates exceeded the ≥1 log bacterial reduction threshold. CONCLUSIONS Data demonstrate that current imipenem/relebactam and ceftazidime/avibactam CLSI breakpoints are appropriate. Data also suggest that higher meropenem/vaborbactam breakpoints relative to meropenem can translate to potentially poor clinical outcomes in patients infected with OXA-48-harbouring isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Abigail K Kois
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
11
|
Chang K, Wang H, Zhao J, Yang X, Wu B, Sun W, Huang M, Cheng Z, Chen H, Song Y, Chen P, Chen X, Gan X, Ma W, Xing L, Wang Y, Gu X, Zou X, Cao B. Polymyxin B/Tigecycline Combination vs. Polymyxin B or Tigecycline Alone for the Treatment of Hospital-Acquired Pneumonia Caused by Carbapenem-Resistant Enterobacteriaceae or Carbapenem-Resistant Acinetobacter baumannii. Front Med (Lausanne) 2022; 9:772372. [PMID: 35755062 PMCID: PMC9226555 DOI: 10.3389/fmed.2022.772372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction It is not clear whether polymyxin B/tigecycline (PMB/TGC) combination is better than PMB or TGC alone in the treatment of hospital-acquired pneumonia (HAP) caused by carbapenem-resistant organisms (CROs). Methods We conducted a multicenter, retrospective cohort study in patients with HAP caused by CROs. The primary outcome was 28-day mortality, and the secondary outcomes included clinical success and the incidence of acute kidney injury (AKI). Multivariate Cox regression analysis was performed to examine the relationship between antimicrobial treatments and 28-day mortality by adjusting other potential confounding factors. Results A total of 364 eligible patients were included in the final analysis, i.e., 99 in the PMB group, 173 in the TGC group, and 92 in the PMB/TGC combination group. The 28-day mortality rate was 28.3% (28/99) in the PMB group, 39.3% (68/173) in the TGC group, and 48.9% (45/92) in the PMB/TGC combination group (p = 0.014). The multivariate Cox regression model showed that there was a statistically significant lower risk of 28-day mortality among participants in the PMB group when compared with the PMB/TGC combination group [hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.31–0.81, p = 0.004] and that participants in the TGC group had a lower risk of 28-day mortality than in the PMB/TGC combination group but without statistical significance. The incidence of AKI in the PMB group (52.5%) and the PMB/TGC combination group (53.3%) was significantly higher than that in the TGC group (33.5%, p = 0.001). Conclusion The appropriate PMB/TGC combination was not superior to appropriate PMB therapy in the treatment of HAP caused by carbapenem-resistant Enterobacteriaceae/carbapenem-resistant Acinetobacter baumannii (CRE/CRAB) in terms of 28-day mortality.
Collapse
Affiliation(s)
- Kang Chang
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bo Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenkui Sun
- Department of Respirology and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenshun Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xin Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Xing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Wu Q, Qian C, Yin H, Liu F, Wu Y, Li W, Xia L, Ma L, Hong M. A Novel Risk Predictive Scoring Model for Predicting Subsequent Infection After Carbapenem-Resistant Gram-Negative Bacteria Colonization in Hematological Malignancy Patients. Front Oncol 2022; 12:897479. [PMID: 35651791 PMCID: PMC9150434 DOI: 10.3389/fonc.2022.897479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study investigated the high-risk factors associated with the increased vulnerability for subsequent clinical CR-GNB infection in carbapenem-resistant Gram-negative bacteria (CR-GNB)-colonized hematological malignancy (HM) patients and built a statistical model to predict subsequent infection. Method All adult HM patients with positive rectoanal swabs culture for CR-GNB between January 2018 and June 2020 were prospectively followed to assess for any subsequent CR-GNB infections and to investigate the risk factors and clinical features of subsequent infection. Results A total of 392 HM patients were enrolled. Of them, 46.7% developed a subsequent clinical CR-GNB infection, with 42 (10.7%) cases of confirmed infection and 141 (36%) cases of clinically diagnosed infection. Klebsiella pneumoniae was the dominant species. The overall mortality rate of patients colonized and infected with CR-GNB was 8.6% and 43.7%. A multivariate analysis showed that remission induction chemotherapy and the duration of agranulocytosis, mucositis, and hypoalbuminemia were significant predictors of subsequent infection after CR-GNB colonization. According to our novel risk-predictive scoring model, the high-risk group were >3 times more likely to develop a subsequent infection in comparison with the low-risk group. Conclusion Our risk-predictive scoring model can early and accurately predict a subsequent CR-GNB infection in HM patients with CR-GNB colonization. The early administration of CR-GNB-targeted empirical therapy in the high-risk group is strongly recommended to decrease their mortality.
Collapse
Affiliation(s)
- Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohui Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Zhang J, Liu W, Shi W, Cui X, Liu Y, Lu Z, Xiao W, Hua T, Yang M. A Nomogram With Six Variables Is Useful to Predict the Risk of Acquiring Carbapenem-Resistant Microorganism Infection in ICU Patients. Front Cell Infect Microbiol 2022; 12:852761. [PMID: 35402310 PMCID: PMC8990894 DOI: 10.3389/fcimb.2022.852761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Carbapenem-resistant microorganism (CRO) transmission in the medical setting confers a global threat to public health. However, there is no established risk prediction model for infection due to CRO in ICU patients. This study aimed to develop a nomogram to predict the risk of acquiring CRO infection in patients with the first ICU admission and to determine the length of ICU stay (ICU-LOS) and 28-day survival. Methods Patient data were retrieved from the Medical Information Mart for Intensive Care (MIMIC-IV) database based on predetermined inclusion and exclusion criteria. A CRO was defined as a bacterium isolated from any humoral microbial culture that showed insensitivity or resistance to carbapenems. The characteristics of CRO and non-CRO patients in the first ICU admission were compared. Propensity score matching was applied to balance the differences between the CRO and non-CRO cohorts. Kaplan–Meier curves were constructed to determine the 28-day survival rate and ICU-LOS. Furthermore, after randomization of the CRO cohort into the training and validation sets, a predictive nomogram was constructed based on LASSO regression and Logistic regression analysis, and its performance was verified by internal validation. Results Overall, 4531 patients who had first ICU admission as recorded in MIMIC-IV were enrolled, 183 (4.04%) of whom were diagnosed with CRO infection. Moreover, CRO infection was independently associated with 28-day survival and ICU-LOS in ICU patients. Parameters eligible for inclusion in this nomogram were male sex, hemoglobin-min, temperature-max, use of a peripherally inserted central catheter line, dialysis treatment, and use of carbapenems. This nomogram showed a better performance as indicated by the area under the receiver operating characteristic curve values of 0.776 (95% confidence interval [CI] 0.667-0.750) and 0.723 (95% CI 0.556-0.855) in the training and validation sets, respectively, in terms of predicting the risk of acquiring CRO infection. Conclusions CRO infection was independently associated with ICU-LOS and 28-day survival in patients with first ICU admission. The nomogram showed the best prediction of the risk of acquiring CRO infection in ICU patients. Based on the nomogram-based scoring, we can management the risk factors and guide individualized prevention and control of CRO.
Collapse
Affiliation(s)
- Jin Zhang
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanjun Liu
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Shi
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuanxuan Cui
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Liu
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China
| | - Zongqing Lu
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyan Xiao
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianfeng Hua
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Yang
- The 2nd Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Min Yang,
| |
Collapse
|
14
|
Mohamed A, Daef E, Nafie A, Shaban L, Ibrahim M. Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia. Antibiotics (Basel) 2021; 10:antibiotics10111325. [PMID: 34827263 PMCID: PMC8615042 DOI: 10.3390/antibiotics10111325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacilli (CR-GNB) has become a global threat. In hospital settings, the association of CR-GNB with ventilator-associated pneumonia (VAP) is a critical public health concern owing to their high resistance rate to most antibiotics. The present study aims to identify the frequency of carbapenem-resistance and to determine the rate of multidrug resistance (MDR), extensive drug resistance (XDR) and pan-drug resistance (PDR) among CR-GNB infections in VAP. Antimicrobial susceptibility testing was carried out using the disk diffusion method and the detection of carbapenemases was screened using the imipenem-E test and the modified carbapenem-inactivation method (mCIM). The isolates were verified by polymerase chain reaction (PCR) for the presence of blaNDM, blaSPM, blaVIM, blaIMP and blaGIM genes. 89.5%, 14%, 17.5%, 10.5%, 3.5% of isolates exhibited the presence of blaNDM, blaVIM, blaSPM, blaIMP and blaGIM, respectively. 76%, 17% and 7% of isolates were PDR, XDR, and MDR, respectively. Carbapenem-resistance genes were identified in a significant percentage and blaNDM was the most predominant gene. All isolates were highly resistant to most antibiotics. This health concern has proven to be a big challenge in developing countries such as Egypt, as it is associated with high morbidity, high mortality, and raised healthcare costs.
Collapse
Affiliation(s)
- Amira Mohamed
- Clinical Pharmacy, Women’s Health Hospital, Assiut University, Assiut 71711, Egypt;
| | - Enas Daef
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut 71711, Egypt; (E.D.); (A.N.)
| | - Amany Nafie
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut 71711, Egypt; (E.D.); (A.N.)
| | - Lamia Shaban
- Chest Department, Faculty of Medicine, Assiut University, Assiut 71711, Egypt;
| | - Maggie Ibrahim
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut 71711, Egypt; (E.D.); (A.N.)
- Correspondence:
| |
Collapse
|