1
|
Pont S, Nilly F, Berry L, Bonhoure A, Alford MA, Louis M, Nogaret P, Bains M, Lesouhaitier O, Hancock REW, Plésiat P, Blanc-Potard AB. Intracellular Pseudomonas aeruginosa persist and evade antibiotic treatment in a wound infection model. PLoS Pathog 2025; 21:e1012922. [PMID: 39946497 PMCID: PMC11825101 DOI: 10.1371/journal.ppat.1012922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Persistent bacterial infections evade host immunity and resist antibiotic treatments through various mechanisms that are difficult to evaluate in a living host. Pseudomonas aeruginosa is a main cause of chronic infections in patients with cystic fibrosis (CF) and wounds. Here, by immersing wounded zebrafish embryos in a suspension of P. aeruginosa isolates from CF patients, we established a model of persistent infection that mimics a murine chronic skin infection model. Live and electron microscopy revealed persisting aggregated P. aeruginosa inside zebrafish cells, including macrophages, at unprecedented resolution. Persistent P. aeruginosa exhibited adaptive resistance to several antibiotics, host cell permeable drugs being the most efficient. Moreover, persistent bacteria could be partly re-sensitized to antibiotics upon addition of anti-biofilm molecules that dispersed the bacterial aggregates in vivo. Collectively, this study demonstrates that an intracellular location protects persistent P. aeruginosa in vivo in wounded zebrafish embryos from host innate immunity and antibiotics, and provides new insights into efficient treatments against chronic infections.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Flore Nilly
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Anne Bonhoure
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Morgan A. Alford
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Mélissande Louis
- CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Pauline Nogaret
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Manjeet Bains
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Olivier Lesouhaitier
- CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Robert E. W. Hancock
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Patrick Plésiat
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| |
Collapse
|
2
|
Hajjar H, Berry L, Wu Y, Touqui L, Vergunst AC, Blanc-Potard AB. Contribution of intramacrophage stages to Pseudomonas aeruginosa infection outcome in zebrafish embryos: insights from mgtC and oprF mutants. Sci Rep 2024; 14:6297. [PMID: 38491095 PMCID: PMC10943088 DOI: 10.1038/s41598-024-56725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.
Collapse
Affiliation(s)
- Hélène Hajjar
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS-UMR5294, INSERM, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS-UMR5294, INSERM, Montpellier, France
| | - Yongzheng Wu
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Cellular Biology and Microbial Infection Unit, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, Paris, France
| | - Annette C Vergunst
- Bacterial Virulence and Chronic Infections (VBIC), Université de Montpellier, INSERM, U1047, Nîmes, France.
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS-UMR5294, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Farman MR, Petráčková D, Kumar D, Držmíšek J, Saha A, Čurnová I, Čapek J, Hejnarová V, Amman F, Hofacker I, Večerek B. Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment. Emerg Microbes Infect 2023; 12:e2146536. [PMID: 36357372 PMCID: PMC9858536 DOI: 10.1080/22221751.2022.2146536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.
Collapse
Affiliation(s)
- Mariam R. Farman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Denisa Petráčková
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Dilip Kumar
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Jakub Držmíšek
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Argha Saha
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Ivana Čurnová
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Jan Čapek
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Václava Hejnarová
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Branislav Večerek
- Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic, Branislav Večerek Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, 14220Prague, Czech Republic
| |
Collapse
|
4
|
Chatziparasidis G, Kantar A, Grimwood K. Pathogenesis of nontypeable Haemophilus influenzae infections in chronic suppurative lung disease. Pediatr Pulmonol 2023. [PMID: 37133207 DOI: 10.1002/ppul.26446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
The respiratory tract antimicrobial defense system is a multilayered defense mechanism that relies upon mucociliary clearance and components of both the innate and adaptive immune systems to protect the lungs from inhaled or aspirated microorganisms. One of these potential pathogens, nontypeable Haemophilus influenzae (NTHi), adopts several, multifaceted redundant strategies to successfully colonize the lower airways and establish a persistent infection. NTHi can impair mucociliary clearance, express multiple multifunctional adhesins for various cell types within the respiratory tract and evade host defenses by surviving within and between cells, forming biofilms, increasing antigenic drift, secreting proteases and antioxidants, and by host-pathogen cross-talk, impair macrophage and neutrophil function. NTHi is recognized as an important pathogen in several chronic lower respiratory disorders, such as protracted bacterial bronchitis, bronchiectasis, cystic fibrosis, and primary ciliary dyskinesia. The persistence of NTHi in human airways, including its capacity to form biofilms, results in chronic infection and inflammation, which can ultimately injure airway wall structures. The complex nature of the molecular pathogenetic mechanisms employed by NTHi is incompletely understood but improved understanding of its pathobiology will be important for developing effective therapies and vaccines, especially given the marked genetic heterogeneity of NTHi and its possession of phase-variable genes. Currently, no vaccine candidates are ready for large phase III clinical trials.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece
- Faculty of Nursing, Thessaly University, Larissa, Greece
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Keith Grimwood
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Departments of Infectious Disease and Paediatrics, Gold Coast Health, Southport, Queensland, Australia
| |
Collapse
|
5
|
Bach H, Lorenzo-Leal AC. Use of niosomes for the treatment of intracellular pathogens infecting the lungs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1891. [PMID: 37032602 DOI: 10.1002/wnan.1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The delivery of drugs in an encapsulated environment is designed to precisely target specific tissues, avoiding a systemic circulation of the drug. Lungs are organs exposed to the environment with multiple defense barriers. However, many pathogens can still colonize and infect the airways bypassing the hostile environment of the lungs. In more complicated situations, some pathogens have developed strategies to multiply and survive within macrophages, one of the first immune cell responses to clearing infections in mammals. Niosomes are artificial vesicles that can be loaded with drugs, offering an alternative strategy to treat intracellular pathogens as nanocarriers. Members of the mycobacteria genus are intracellular pathogens that have evolved to escape the immunological response, specifically in macrophages, the white cells responsible for the clearance of pathogens. This review analyzed the state-of-the-art niosome synthesis aimed at tackling the problem of intracellular pathogen therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana C Lorenzo-Leal
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
The polyamino-isoprenyl potentiator NV716 revives disused antibiotics against Gram-negative bacteria in broth, infected monocytes, or biofilms, by disturbing the barrier effect of their outer membrane. Eur J Med Chem 2022; 238:114496. [DOI: 10.1016/j.ejmech.2022.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
|
7
|
Pont S, Blanc-Potard AB. Zebrafish Embryo Infection Model to Investigate Pseudomonas aeruginosa Interaction With Innate Immunity and Validate New Therapeutics. Front Cell Infect Microbiol 2021; 11:745851. [PMID: 34660345 PMCID: PMC8515127 DOI: 10.3389/fcimb.2021.745851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected patients with cystic fibrosis (CF). Considering the intrinsic and acquired resistance of P. aeruginosa to currently used antibiotics, new therapeutic strategies against this pathogen are urgently needed. Whereas virulence factors of P. aeruginosa are well characterized, the interplay between P. aeruginosa and the innate immune response during infection remains unclear. Zebrafish embryo is now firmly established as a potent vertebrate model for the study of infectious human diseases, due to strong similarities of its innate immune system with that of humans and the unprecedented possibilities of non-invasive real-time imaging. This model has been successfully developed to investigate the contribution of bacterial and host factors involved in P. aeruginosa pathogenesis, as well as rapidly assess the efficacy of anti-Pseudomonas molecules. Importantly, zebrafish embryo appears as the state-of-the-art model to address in vivo the contribution of innate immunity in the outcome of P. aeruginosa infection. Of interest, is the finding that the zebrafish encodes a CFTR channel closely related to human CFTR, which allowed to develop a model to address P. aeruginosa pathogenesis, innate immune response, and treatment evaluation in a CF context.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| |
Collapse
|