1
|
Trivett H, Darby AC, Oyebode O. Academic and clinical perspectives of metagenome sequencing as a diagnostic tool for infectious disease: an interpretive phenomenological study. BMC Infect Dis 2025; 25:448. [PMID: 40165140 PMCID: PMC11959724 DOI: 10.1186/s12879-025-10820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Effective infectious disease diagnostics (IDD) are vital for informing clinical decision-making regarding the treatment and patient management of disease and infections. In England, conventional clinical methods rely upon culture-dependent techniques, and there has been little shift in the acceptance and integration of culture-independent sequencing methods into routine clinical IDD. This study explored stakeholders' experiences within IDD, including those working in clinical settings and those conducting research at the forefront of microbial genomics. From the participants' experiences, the study aimed to identify barriers and facilitators driving the development and implementation of metagenome sequencing as a routine diagnostic. METHODS Virtual semi-structured interviews were conducted with purposively selected individuals involved in IDD. The interviews explored the experiences of implementing metagenome sequencing as a diagnostic tool and decisions about which diagnostics are used for identifying bacteria-causing infections. Thematic analysis was used to analyse the data, and an Interpretive Phenomenological approach was used throughout. RESULTS Ten individuals were interviewed between July 2021 and October 2021, including clinical scientists, consultants, and professors in academia. Their experience ranged from limited knowledge of metagenome sequencing to an expert understanding of the phenomenon. The thoughts and perspectives of participants of the study could be grouped into five themes: Availability of diagnostics for infectious diseases; Clinical laboratory infrastructure; Ethical Data Sharing: Enhancing metagenomics through Open Access; Case study in action: COVID-19; and The importance of communication to improve developments of new diagnostics. Participants recognised the need for new diagnostics to be implemented to overcome the limitations of current diagnostic approaches but highlighted the barriers to integrating new diagnostics into clinical settings, such as the impact on clinical decision-making, accreditation, and cost. Further, participants felt that lessons could be learnt from using metagenomics in COVID-19 and how other diagnostic platforms have been integrated into clinical settings over the last 20 years. CONCLUSIONS The study provided insights into stakeholders' perspectives and opinions to address the knowledge gap in current literature and identified barriers and facilitators which drive the implementation of metagenome sequencing as a routine IDD in clinical settings. Knowledge of new and upcoming genomic diagnostic testing is not equally distributed throughout the UK, impacting the understanding and drive to integrate metagenome sequencing into routine clinical diagnostics. Improvements in access to new diagnostics could improve patient treatment and management and positively impact population health.
Collapse
Affiliation(s)
- Hannah Trivett
- Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Bioscience Building, Liverpool, UK.
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Alistair C Darby
- Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Bioscience Building, Liverpool, UK
| | - Oyinlola Oyebode
- Wolfson Institute of Population Health, Queen Mary University of London, Mile End Road, London, UK
| |
Collapse
|
2
|
Buddle S, Forrest L, Akinsuyi N, Martin Bernal LM, Brooks T, Venturini C, Miller C, Brown JR, Storey N, Atkinson L, Best T, Roy S, Goldsworthy S, Castellano S, Simmonds P, Harvala H, Golubchik T, Williams R, Breuer J, Morfopoulou S, Torres Montaguth OE. Evaluating metagenomics and targeted approaches for diagnosis and surveillance of viruses. Genome Med 2024; 16:111. [PMID: 39252069 PMCID: PMC11382446 DOI: 10.1186/s13073-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Metagenomics is a powerful approach for the detection of unknown and novel pathogens. Workflows based on Illumina short-read sequencing are becoming established in diagnostic laboratories. However, high sequencing depth requirements, long turnaround times, and limited sensitivity hinder broader adoption. We investigated whether we could overcome these limitations using protocols based on untargeted sequencing with Oxford Nanopore Technologies (ONT), which offers real-time data acquisition and analysis, or a targeted panel approach, which allows the selective sequencing of known pathogens and could improve sensitivity. METHODS We evaluated detection of viruses with readily available untargeted metagenomic workflows using Illumina and ONT, and an Illumina-based enrichment approach using the Twist Bioscience Comprehensive Viral Research Panel (CVRP), which targets 3153 viruses. We tested samples consisting of a dilution series of a six-virus mock community in a human DNA/RNA background, designed to resemble clinical specimens with low microbial abundance and high host content. Protocols were designed to retain the host transcriptome, since this could help confirm the absence of infectious agents. We further compared the performance of commonly used taxonomic classifiers. RESULTS Capture with the Twist CVRP increased sensitivity by at least 10-100-fold over untargeted sequencing, making it suitable for the detection of low viral loads (60 genome copies per ml (gc/ml)), but additional methods may be needed in a diagnostic setting to detect untargeted organisms. While untargeted ONT had good sensitivity at high viral loads (60,000 gc/ml), at lower viral loads (600-6000 gc/ml), longer and more costly sequencing runs would be required to achieve sensitivities comparable to the untargeted Illumina protocol. Untargeted ONT provided better specificity than untargeted Illumina sequencing. However, the application of robust thresholds standardized results between taxonomic classifiers. Host gene expression analysis is optimal with untargeted Illumina sequencing but possible with both the CVRP and ONT. CONCLUSIONS Metagenomics has the potential to become standard-of-care in diagnostics and is a powerful tool for the discovery of emerging pathogens. Untargeted Illumina and ONT metagenomics and capture with the Twist CVRP have different advantages with respect to sensitivity, specificity, turnaround time and cost, and the optimal method will depend on the clinical context.
Collapse
Affiliation(s)
- Sarah Buddle
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Leysa Forrest
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Naomi Akinsuyi
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luz Marina Martin Bernal
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tony Brooks
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charles Miller
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nathaniel Storey
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Laura Atkinson
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Timothy Best
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sunando Roy
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sian Goldsworthy
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, University College London, London, UK
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
| | - Tanya Golubchik
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rachel Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Sofia Morfopoulou
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK.
| | - Oscar Enrique Torres Montaguth
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
3
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Alcolea-Medina A, Alder C, Snell LB, Charalampous T, Aydin A, Nebbia G, Williams T, Goldenberg S, Douthwaite S, Batra R, Cliff PR, Mischo H, Neil S, Wilks M, Edgeworth JD. Unified metagenomic method for rapid detection of microorganisms in clinical samples. COMMUNICATIONS MEDICINE 2024; 4:135. [PMID: 38972920 PMCID: PMC11228040 DOI: 10.1038/s43856-024-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Clinical metagenomics involves the genomic sequencing of all microorganisms in clinical samples ideally after depletion of human DNA to increase sensitivity and reduce turnaround times. Current human DNA depletion methods preferentially preserve either DNA or RNA containing microbes, but not both simultaneously. Here we describe and present data using a practical and rapid mechanical host-depletion method allowing simultaneous detection of RNA and DNA microorganisms linked with nanopore sequencing. METHODS The human cells from respiratory samples are lysed mechanically using 1.4 mm zirconium-silicate spheres and the human DNA is depleted using a nonspecific endonuclease. The RNA is converted to dsDNA to allow the simultaneous sequencing of DNA and RNA. RESULTS The method decreases human DNA concentration by a median of eight Ct values while detecting a broad range of RNA & DNA viruses, bacteria, including atypical pathogens (Legionella, Chlamydia, Mycoplasma) and fungi (Candida, Pneumocystis, Aspergillus). The first automated reports are generated after 30 min sequencing from a 7 h end-to-end workflow. Sensitivity and specificity for bacterial detection are 90% and 100%, respectively, and viral detection are 92% and 100% after 2 h of sequencing. Prospective validation on 33 consecutive lower respiratory tract samples from ventilated patients with suspected pneumonia shows 60% concordance with routine testing, detection of additional pathogens in 21% of samples and pathogen genomic assembly achieve for 42% of viruses and 33% of bacteria. CONCLUSIONS Although further workflow refinement and validation on samples containing a broader range of pathogens is required, it holds promise as a clinically deployable workflow suitable for evaluation in routine microbiology laboratories.
Collapse
Affiliation(s)
- Adela Alcolea-Medina
- Infection Sciences, Synnovis, London, UK.
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK.
- Department of Infectious Diseases, King's College London, London, UK.
| | - Christopher Alder
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
| | - Luke B Snell
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
- Department of Infectious Diseases, King's College London, London, UK
| | | | - Alp Aydin
- Quadram Institute Bioscience, Norwich, UK
| | - Gaia Nebbia
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Tom Williams
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Simon Goldenberg
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Sam Douthwaite
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Hannah Mischo
- Department of Infectious Diseases, King's College London, London, UK
| | - Stuart Neil
- Department of Infectious Diseases, King's College London, London, UK
| | - Mark Wilks
- Queen Mary, University of London, London, UK
| | - Jonathan D Edgeworth
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
- Department of Infectious Diseases, King's College London, London, UK
| |
Collapse
|
5
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
6
|
Chai MG, Tu Q, Cotta MO, Bauer MJ, Balch R, Okafor C, Comans T, Kruger P, Meyer J, Shekar K, Brady K, Fourie C, Sharp N, Vlad L, Whiley D, Ungerer JPJ, Mcwhinney BC, Farkas A, Paterson DL, Clark JE, Hajkowicz K, Raman S, Bialasiewicz S, Lipman J, Forde BM, Harris PNA, Schlapbach LJ, Coin L, Roberts JA, Irwin AD. Achievement of therapeutic antibiotic exposures using Bayesian dosing software in critically unwell children and adults with sepsis. Intensive Care Med 2024; 50:539-547. [PMID: 38478027 PMCID: PMC11018654 DOI: 10.1007/s00134-024-07353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/11/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to effective antibiotic exposure in children and adults with sepsis in ICU. METHODS A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to patients in Phase 1 (a pre-post-design). RESULTS 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 0.01-0.05, p < 0.01). There was no difference observed in in-hospital mortality. CONCLUSIONS Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated further in trials to establish its impact on clinical outcomes.
Collapse
Affiliation(s)
- Ming G Chai
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Quyen Tu
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Menino O Cotta
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD, Australia
| | - Michelle J Bauer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ross Balch
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Charles Okafor
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Tracy Comans
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Peter Kruger
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jason Meyer
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Kara Brady
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Cheryl Fourie
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Natalie Sharp
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Luminita Vlad
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - David Whiley
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Faculty of Biomedical Science, University of Queensland, Brisbane, QLD, Australia
| | - Brett C Mcwhinney
- Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
| | - Andras Farkas
- Optimum Dosing Strategies, Bloomingdale, NJ, 07403, USA
- Department of Pharmacy, Saint Clare's Health, Denville, NJ, 07834, USA
| | - David L Paterson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Julia E Clark
- Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Australia
| | - Krispin Hajkowicz
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Sainath Raman
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Seweryn Bialasiewicz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeffrey Lipman
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- ICU and Jameson Trauma Institute, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Nimes University Hospital, University of Montpellier, Nimes, France
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick N A Harris
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Luregn J Schlapbach
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
- Department of Pediatric and Neonatal Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lachlan Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Disease Institute, Metro North, QLD Health, Herston, QLD, Australia
| | - Adam D Irwin
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.
- Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Australia.
| |
Collapse
|
7
|
Kan CM, Tsang HF, Pei XM, Ng SSM, Yim AKY, Yu ACS, Wong SCC. Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis. Int J Mol Sci 2024; 25:3333. [PMID: 38542307 PMCID: PMC10970082 DOI: 10.3390/ijms25063333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Metagenomic sequencing has emerged as a transformative tool in infectious disease diagnosis, offering a comprehensive and unbiased approach to pathogen detection. Leveraging international standards and guidelines is essential for ensuring the quality and reliability of metagenomic sequencing in clinical practice. This review explores the implications of international standards and guidelines for the application of metagenomic sequencing in infectious disease diagnosis. By adhering to established standards, such as those outlined by regulatory bodies and expert consensus, healthcare providers can enhance the accuracy and clinical utility of metagenomic sequencing. The integration of international standards and guidelines into metagenomic sequencing workflows can streamline diagnostic processes, improve pathogen identification, and optimize patient care. Strategies in implementing these standards for infectious disease diagnosis using metagenomic sequencing are discussed, highlighting the importance of standardized approaches in advancing precision infectious disease diagnosis initiatives.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (C.-M.K.); (H.F.T.)
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (C.-M.K.); (H.F.T.)
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | | | - Allen Chi-Shing Yu
- Codex Genetics Limited, Shatin, Hong Kong, China; (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
8
|
Costales C, Dien Bard J. The Report Says What?: How the Medical Microbiologist can aid in the Interpretation of Next-Generation Sequencing Results. Clin Lab Med 2024; 44:75-84. [PMID: 38280799 DOI: 10.1016/j.cll.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The applications of next-generation sequencing (NGS) in the clinical microbiology laboratory are expanding at a rapid pace. The medical microbiologist thus plays a key role in translating the results of these emerging technologies to the practicing clinician. Here we discuss the factors to consider to successfully develop standardized reporting for microbial targeted or metagenomic NGS testing in the clinical laboratory.
Collapse
Affiliation(s)
- Cristina Costales
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Charalampous T, Alcolea-Medina A, Snell LB, Alder C, Tan M, Williams TGS, Al-Yaakoubi N, Humayun G, Meadows CIS, Wyncoll DLA, Paul R, Hemsley CJ, Jeyaratnam D, Newsholme W, Goldenberg S, Patel A, Tucker F, Nebbia G, Wilks M, Chand M, Cliff PR, Batra R, O'Grady J, Barrett NA, Edgeworth JD. Routine Metagenomics Service for ICU Patients with Respiratory Infection. Am J Respir Crit Care Med 2024; 209:164-174. [PMID: 37938162 PMCID: PMC10806431 DOI: 10.1164/rccm.202305-0901oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023] Open
Abstract
Rationale: Respiratory metagenomics (RMg) needs evaluation in a pilot service setting to determine utility and inform implementation into routine clinical practice. Objectives: Feasibility, performance, and clinical impacts on antimicrobial prescribing and infection control were recorded during a pilot RMg service. Methods: RMg was performed on 128 samples from 87 patients with suspected lower respiratory tract infection (LRTI) on two general and one specialist respiratory ICUs at Guy's and St Thomas' NHS Foundation Trust, London. Measurements and Main Results: During the first 15 weeks, RMg provided same-day results for 110 samples (86%), with a median turnaround time of 6.7 hours (interquartile range = 6.1-7.5 h). RMg was 93% sensitive and 81% specific for clinically relevant pathogens compared with routine testing. Forty-eight percent of RMg results informed antimicrobial prescribing changes (22% escalation; 26% deescalation) with escalation based on speciation in 20 out of 24 cases and detection of acquired-resistance genes in 4 out of 24 cases. Fastidious or unexpected organisms were reported in 21 samples, including anaerobes (n = 12), Mycobacterium tuberculosis, Tropheryma whipplei, cytomegalovirus, and Legionella pneumophila ST1326, which was subsequently isolated from the bedside water outlet. Application to consecutive severe community-acquired LRTI cases identified Staphylococcus aureus (two with SCCmec and three with luk F/S virulence determinants), Streptococcus pyogenes (emm1-M1uk clone), S. dysgalactiae subspecies equisimilis (STG62647A), and Aspergillus fumigatus with multiple treatments and public health impacts. Conclusions: This pilot study illustrates the potential of RMg testing to provide benefits for antimicrobial treatment, infection control, and public health when provided in a real-world critical care setting. Multicenter studies are now required to inform future translation into routine service.
Collapse
Affiliation(s)
- Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Infection Sciences, Synnovis, London, United Kingdom
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | - Christopher Alder
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | - Mark Tan
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | | | - Noor Al-Yaakoubi
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | - Gul Humayun
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
| | - Christopher I S Meadows
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Duncan L A Wyncoll
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Richard Paul
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | | | | | | | | | - Amita Patel
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | | | | | - Mark Wilks
- London School of Medicine and Dentistry, Queen Mary University, London, United Kingdom
| | - Meera Chand
- UK Health Security Agency, London, United Kingdom; and
| | | | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| | | | - Nicholas A Barrett
- Critical Care Directorate, Guy's and St Thomas' NHS Foundation Trust, London, England
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences and
- Department of Infectious Diseases and
| |
Collapse
|
10
|
Bloemen B, Gand M, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Development of a portable on-site applicable metagenomic data generation workflow for enhanced pathogen and antimicrobial resistance surveillance. Sci Rep 2023; 13:19656. [PMID: 37952062 PMCID: PMC10640560 DOI: 10.1038/s41598-023-46771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Rapid, accurate and comprehensive diagnostics are essential for outbreak prevention and pathogen surveillance. Real-time, on-site metagenomics on miniaturized devices, such as Oxford Nanopore Technologies MinION sequencing, could provide a promising approach. However, current sample preparation protocols often require substantial equipment and dedicated laboratories, limiting their use. In this study, we developed a rapid on-site applicable DNA extraction and library preparation approach for nanopore sequencing, using portable devices. The optimized method consists of a portable mechanical lysis approach followed by magnetic bead-based DNA purification and automated sequencing library preparation, and resulted in a throughput comparable to a current optimal, laboratory-based protocol using enzymatic digestion to lyse cells. By using spike-in reference communities, we compared the on-site method with other workflows, and demonstrated reliable taxonomic profiling, despite method-specific biases. We also demonstrated the added value of long-read sequencing by recovering reads containing full-length antimicrobial resistance genes, and attributing them to a host species based on the additional genomic information they contain. Our method may provide a rapid, widely-applicable approach for microbial detection and surveillance in a variety of on-site settings.
Collapse
Affiliation(s)
- Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052, Ghent, Belgium
| | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium.
| |
Collapse
|