1
|
Jafari SH, Lajevardi ZS, Zamani Fard MM, Jafari A, Naghavi S, Ravaei F, Taghavi SP, Mosadeghi K, Zarepour F, Mahjoubin-Tehran M, Rahimian N, Mirzaei H. Imaging Techniques and Biochemical Biomarkers: New Insights into Diagnosis of Pancreatic Cancer. Cell Biochem Biophys 2024; 82:3123-3144. [PMID: 39026059 DOI: 10.1007/s12013-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Pancreatic cancer (PaC) incidence is increasing, but our current screening and diagnostic strategies are not very effective. However, screening could be helpful in the case of PaC, as recent evidence shows that the disease progresses gradually. Unfortunately, there is no ideal screening method or program for detecting PaC in its early stages. Conventional imaging techniques, such as abdominal ultrasound, CT, MRI, and EUS, have not been successful in detecting early-stage PaC. On the other hand, biomarkers may be a more effective screening tool for PaC and have greater potential for further evaluation compared to imaging. Recent studies on biomarkers and artificial intelligence (AI)-enhanced imaging have shown promising results in the early diagnosis of PaC. In addition to proteins, non-coding RNAs are also being studied as potential biomarkers for PaC. This review consolidates the current literature on PaC screening modalities to provide an organized framework for future studies. While conventional imaging techniques have not been effective in detecting early-stage PaC, biomarkers and AI-enhanced imaging are promising avenues of research. Further studies on the use of biomarkers, particularly non-coding RNAs, in combination with imaging modalities may improve the accuracy of PaC screening and lead to earlier detection of this deadly disease.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sadat Lajevardi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Kimia Mosadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Hoeijmakers EJI, Stammen L, Wildberger JE, Eijsvoogel NG, Hersbach JM, Pernot JCJG, Flohr TG, Martens B, Jeukens CRLPN. PCD-CT enables contrast media reduction in abdominal imaging compared to an individualized kV-adapted contrast media injection protocol on EID-CT. Eur J Radiol 2024; 179:111680. [PMID: 39133989 DOI: 10.1016/j.ejrad.2024.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES This study aims to demonstrate reduced iodine contrast media (CM) in routine abdominal CT scans in portal venous phase (PVP) using a photon-counting detector CT (PCD-CT) compared to total body weight (TBW) and kV-adapted CM injection protocols on a state-of-the-art energy-integrating detector CT (EID-CT) while maintaining sufficient image quality (IQ). MATERIALS AND METHODS Consecutive contrast-enhanced abdominal PVP CT scans from an EID-CT (Nov 2022-March 2024) and a PCD-CT (Sep 2023-Dec 2023) were compared. CM parameters (total iodine load (TIL), iodine delivery rate (IDR) and dosing factor (DF)) were reported. An individualized acquisition and CM injection protocol based on TBW and kV was applied for the EID-CT and a TBW adapted CM injection protocol was used for the PCD-CT. Objective IQ was evaluated with mean attenuation (Hounsfield Units, HU), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)). Subjective IQ was assessed via a 5-point Likert scale by 2 expert readers based on diagnostic confidence. RESULTS Based on 91 EID-CT scans and 102 PCD-CT scans a TIL reduction of 20.1 % was observed for PCD-CT. PCD-CT demonstrated significantly higher SNR (9.9 ± 1.7 vs. 9.1 ± 1.8, p < 0.001) and CNR (5.1 ± 1.7 vs. 4.3 ± 1.3, p < 0.001) compared to EID-CT. Subjective IQ assessment showed that all scans had sufficient diagnostic IQ. CONCLUSIONS PCD-CT allows for CM reduction while providing higher SNR and CNR compared to EID-CT, using clinical individualized scan and CM injection protocols.
Collapse
Affiliation(s)
- Eva J I Hoeijmakers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands.
| | - Lion Stammen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | - Nienke G Eijsvoogel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| | - Johanna M Hersbach
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| | - Joey C J G Pernot
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| | - Thomas G Flohr
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; Siemens Healthineers, Siemensstrasse 1, 91301 Forcheim, Germany
| | - Bibi Martens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Cécile R L P N Jeukens
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, 6202 AZ Maastricht, the Netherlands
| |
Collapse
|
3
|
Nakamoto A, Onishi H, Tsuboyama T, Fukui H, Ota T, Ogawa K, Yano K, Kiso K, Honda T, Tatsumi M, Tomiyama N. Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning-Based Reconstruction Algorithm. J Comput Assist Tomogr 2023; 47:698-703. [PMID: 37707398 DOI: 10.1097/rct.0000000000001485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
OBJECTIVE To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning-based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. METHODS Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. RESULTS Deep learning-based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning-based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). CONCLUSIONS Deep learning-based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.
Collapse
Affiliation(s)
- Atsushi Nakamoto
- From the Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Takai Y, Noda Y, Asano M, Kawai N, Kaga T, Tsuchida Y, Miyoshi T, Hyodo F, Kato H, Matsuo M. Deep-learning image reconstruction for 80-kVp pancreatic CT protocol: Comparison of image quality and pancreatic ductal adenocarcinoma visibility with hybrid-iterative reconstruction. Eur J Radiol 2023; 165:110960. [PMID: 37423016 DOI: 10.1016/j.ejrad.2023.110960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To evaluate the image quality and visibility of pancreatic ductal adenocarcinoma (PDAC) in 80-kVp pancreatic CT protocol and compare them between hybrid-iterative reconstruction (IR) and deep-learning image reconstruction (DLIR) algorithms. METHOD A total of 56 patients who underwent 80-kVp pancreatic protocol CT for pancreatic disease evaluation from January 2022 to July 2022 were included in this retrospective study. Among them, 20 PDACs were observed. The CT raw data were reconstructed using 40% adaptive statistical IR-Veo (hybrid-IR group) and DLIR at medium- and high-strength levels (DLIR-M and DLIR-H groups, respectively). The CT attenuation of the abdominal aorta, pancreas, and PDAC (if present) at the pancreatic phase and those of the portal vein and liver at the portal venous phase; background noise; signal-to-noise ratio (SNR) of these anatomical structures; and tumor-to-pancreas contrast-to-noise ratio (CNR) were calculated. The confidence scores for the image noise, overall image quality, and visibility of PDAC were qualitatively assigned using a five-point scale. Quantitative and qualitative parameters were compared among the three groups using Friedman test. RESULTS The CT attenuation of all anatomical structures were comparable among the three groups (P = .26-.86), except that of the pancreas (P = .001). Background noise was lower (P <.001) and SNRs (P <.001) and tumor-to-pancreas CNR (P <.001) were higher in the DLIR-H group than those in the other two groups. The image noise, overall image quality, and visibility of PDAC were better in the DLIR-H group than in the other two groups (P <.001-.003). CONCLUSION In 80-kVp pancreatic CT protocol, DLIR at a high-strength level improved image quality and visibility of PDAC.
Collapse
Affiliation(s)
- Yukiko Takai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masashi Asano
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Tetsuro Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yuki Tsuchida
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
5
|
Agostini A, Borgheresi A, Mariotti F, Ottaviani L, Carotti M, Valenti M, Giovagnoni A. New Frontiers in Oncological Imaging With Computed Tomography: From Morphology to Function. Semin Ultrasound CT MR 2023; 44:214-227. [PMID: 37245886 DOI: 10.1053/j.sult.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The latest evolutions in Computed Tomography (CT) technology have several applications in oncological imaging. The innovations in hardware and software allow for the optimization of the oncological protocol. Low-kV acquisitions are possible thanks to the new powerful tubes. Iterative reconstruction algorithms and artificial intelligence are helpful for the management of image noise during image reconstruction. Functional information is provided by spectral CT (dual-energy and photon counting CT) and perfusion CT.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy.
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Francesco Mariotti
- Department of Radiological Sciences, Division of Medical Physics, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Letizia Ottaviani
- Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Marina Carotti
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Marco Valenti
- Department of Radiological Sciences, Division of Medical Physics, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| |
Collapse
|
6
|
Noda Y, Tochigi T, Parakh A, Joseph E, Hahn PF, Kambadakone A. Low keV portal venous phase as a surrogate for pancreatic phase in a pancreatic protocol dual-energy CT: feasibility, image quality, and lesion conspicuity. Eur Radiol 2021; 31:6898-6908. [PMID: 33744992 DOI: 10.1007/s00330-021-07744-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/03/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the feasibility of a proposed pancreatic protocol CT generated from portal-venous phase (PVP) dual-energy CT (DECT) acquisition and its impact on image quality, lesion conspicuity, and arterial visualization/involvement. METHODS We included 111 patients (mean age, 66.8 years) who underwent pancreatic protocol DECT (pancreatic phase, PP, and PVP). The original DECT acquisition was used to create two data sets-standard protocol (50 keV PP/65 keV PVP) and proposed protocol (40 keV/65 keV PVP). Three reviewers evaluated the two data sets for image quality, lesion conspicuity, and arterial visualization/involvement using a 5-point scale. The signal-to-noise ratio (SNR) of pancreas and lesion-to-pancreas contrast-to-noise ratio (CNR) was calculated. Qualitative scores, quantitative parameters, and dose-length product (DLP) were compared between standard and proposed protocols. RESULTS The image quality, SNR of pancreas, and lesion-to-pancreas CNR of the standard and proposed protocol were comparable (p = 0.11-1.00). Lesion conspicuity was comparable between the standard and proposed protocols for pancreatic ductal adenocarcinoma (p = 0.55) and pancreatic cysts (p = 0.28). The visualization of larger arteries and arterial involvement were comparable between the two protocols (p = 0.056-1.00) while the scores were higher for smaller vessels in the standard protocol (p < 0.0001-0.0015). DLP of the proposed protocol (670.4 mGy·cm) showed a projected 42% reduction than the standard protocol (1145.9 mGy·cm) (p < 0.0001). CONCLUSION Pancreatic protocol CT generated from a single PVP DECT acquisition is feasible and could potentially be an alternative to the standard pancreatic protocol with PP and PVP. KEY POINTS • The lesion conspicuity for focal pancreatic lesions was comparable between the proposed protocol and standard dual-phase pancreatic protocol CT. • Qualitative and quantitative image assessments were almost comparable between two protocols. • The radiation dose of a proposed protocol showed a projected 42% reduction from the conventional protocol.
Collapse
Affiliation(s)
- Yoshifumi Noda
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, White 270, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toru Tochigi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, White 270, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, 260-8670, Japan
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, White 270, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Evita Joseph
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, White 270, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Peter F Hahn
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, White 270, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, White 270, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Noda Y, Iritani Y, Kawai N, Miyoshi T, Ishihara T, Hyodo F, Matsuo M. Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction. Abdom Radiol (NY) 2021; 46:4238-4244. [PMID: 33973060 DOI: 10.1007/s00261-021-03111-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate image quality, image noise, and conspicuity of pancreatic ductal adenocarcinoma (PDAC) in pancreatic low-dose computed tomography (LDCT) reconstructed using deep learning image reconstruction (DLIR) and compare with those of images reconstructed using hybrid iterative reconstruction (IR). METHODS Our institutional review board approved this prospective study. Written informed consent was obtained from all patients. Twenty-eight consecutive patients with PDAC undergoing chemotherapy (14 men and 14 women; mean age, 68.4 years) underwent pancreatic LDCT for therapy evaluation. The LDCT images were reconstructed using 40% adaptive statistical iterative reconstruction-Veo (hybrid-IR) and DLIR at medium and high levels (DLIR-M and DLIR-H). The image noise, diagnostic acceptability, and conspicuity of PDAC were qualitatively assessed using a 5-point scale. CT numbers of the abdominal aorta, portal vein, pancreas, PDAC, background noise, signal-to-noise ratio (SNR) of the anatomical structures, and tumor-to-pancreas contrast-to-noise ratio (CNR) were calculated. Qualitative and quantitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H images. RESULTS CT dose-index volumes and dose-length product in pancreatic LDCT were 2.3 ± 1.0 mGy and 74.9 ± 37.0 mGy•cm, respectively. The image noise, diagnostic acceptability, and conspicuity of PDAC were significantly better in DLIR-H than those in hybrid-IR and DLIR-M (all P < 0.001). The background noise was significantly lower in the DLIR-H images (P < 0.001) and resulted in improved SNRs (P < 0.001) and CNR (P < 0.001) compared with those in the hybrid-IR and DLIR-M images. CONCLUSION DLIR significantly reduced image noise and improved image quality in pancreatic LDCT images compared with hybrid-IR.
Collapse
|
8
|
Singh R, Wu W, Wang G, Kalra MK. Artificial intelligence in image reconstruction: The change is here. Phys Med 2020; 79:113-125. [DOI: 10.1016/j.ejmp.2020.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
|
9
|
Iodine dose optimization in portal venous phase virtual monochromatic images of the abdomen: Prospective study on rapid kVp switching dual energy CT. Eur J Radiol 2020; 122:108746. [DOI: 10.1016/j.ejrad.2019.108746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 02/04/2023]
|
10
|
Son BG, Kim MJ, Park MH, Kim K, Kim J, Kim SY, Lee KJ, Choi SH, Kim AY, Park SH. Two Small Intravenous Catheters for High-Rate Contrast Medium Injection for Computed Tomography in Patients Lacking Superficial Veins to Accommodate a Large Catheter. Korean J Radiol 2018; 19:489-497. [PMID: 29713227 PMCID: PMC5904476 DOI: 10.3348/kjr.2018.19.3.489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 01/29/2023] Open
Abstract
Objective To prospectively investigate the feasibility of using 2 small intravenous catheters for high-rate computed tomography (CT) contrast injection in patients lacking superficial veins capable of accommodating ≤ 20-gauge catheters. Materials and Methods Sixty-eight consecutive eligible adults referred for dynamic liver CT were enrolled; 58 had previously undergone liver CT, including 8 that experienced extravasation. Two 22- or 24-gauge catheters were placed in all patients after 2–5 venipunctures, and 2 mL/kg of contrast agent (370 mg I/mL) was split-administered through both catheters to achieve total flow rate of 4 mL/s. Patients' experience and examination success rate, defined as uneventful scans completed at 4 mL/s or at < 4 mL/s achieving standard image quality in all phases, were analyzed. Quantitative hepatic signal-to-noise and hepatic vascular contrast-to-noise ratios (CNRs) were compared with 30 control examinations scanned at 4 mL/s using an 18-gauge catheter. Results One case each of extravasation and severe injection pain caused the examination to be aborted. Success rate was 88.2% (60/68; 54 patients scanned at 4 mL/s, 6 at 3.5–3.9 mL/s). Fifty-five of 58 patients (94.8%) that had past CT regarded the venipuncture as more tolerable than (n = 36) or similar to (n = 19) past experiences; 45 of 58 patients (77.6%) found contrast injection less painful than (n = 35) or similar to (n = 10) past experiences. When compared with control examinations, signal-to-noise ratio was similar in all phases (p ≥ 0.502), but the hepatic arterial CNR in arterial phase was slightly inferior (p ≤ 0.047). Conclusion Using 2 small intravenous catheters can effectively achieve high-rate CT contrast injection in patients lacking adequate superficial veins.
Collapse
Affiliation(s)
- Bum Gu Son
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Min Jung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Myeung Hwa Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Kyoungsook Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jiyu Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Se-Young Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Kyung Jin Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Ah Young Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
11
|
Visualization of right adrenal vein: Comparison with three phase dynamic contrast-enhanced CT. Eur J Radiol 2017; 96:104-108. [PMID: 29103467 DOI: 10.1016/j.ejrad.2017.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/13/2017] [Accepted: 08/20/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate the visualization of the right adrenal vein (RAV) on dynamic contrast-enhanced computed tomography (CT) images in patients with primary aldosteronism. MATERIALS AND METHODS We evaluated 27 consecutive patients with primary aldosteronism who underwent contrast-enhanced dynamic CT and subsequent adrenal venous sampling. Scan delays were 10-, 20- and 60-s after a bolus-tracking program detected that the threshold of a 100 Hounsfield units (HU) increase in the abdominal aorta had been achieved. RAV visualization for each phase was evaluated by two readers using a four-point scale. The Friedman and McNemar tests were employed to compare the confidence ratings and the RAV visualization rates between the three phase images. RESULTS The RAV visualization rates were 20.4%, 83.3%, and 63.0%, for the first, second, and third phase, respectively. The RAV visualization rates were 92.6%, 83.3%, 63.0%, and 92.6% for all three phases combined, the first and second phase image combined, the first and third phase image combined, and second and third phase image combined. The combined second and third phase images had the highest RAV visualization rates compared with all other image combinations (P<0.0001). CONCLUSION RAV visualization was significantly improved by combining the second and third phase images.
Collapse
|
12
|
Hedgire S, Ghoshhajra B, Kalra M. Dose optimization in cardiac CT. Phys Med 2017; 41:97-103. [DOI: 10.1016/j.ejmp.2017.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
|
13
|
Aschoff AJ, Catalano C, Kirchin MA, Krix M, Albrecht T. Low radiation dose in computed tomography: the role of iodine. Br J Radiol 2017; 90:20170079. [PMID: 28471242 PMCID: PMC5603952 DOI: 10.1259/bjr.20170079] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration.
Collapse
Affiliation(s)
- Andrik J Aschoff
- 1 Department for Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Kempten, Kempten, Germany
| | - Carlo Catalano
- 2 Department of Radiological Sciences, University of Rome "La Sapienza", Rome, Italy
| | - Miles A Kirchin
- 3 Bracco Imaging SpA, Global Medical & Regulatory Affairs, Milan, Italy
| | - Martin Krix
- 4 Bracco Imaging Germany, Global Medical & Regulatory Affairs, Konstanz, Germany
| | - Thomas Albrecht
- 5 Institut für Radiologie und Interventionelle Therapie, Vivantes-Klinikum Neukölln, Berlin, Germany
| |
Collapse
|
14
|
Granata V, Fusco R, Catalano O, Setola SV, de Lutio di Castelguidone E, Piccirillo M, Palaia R, Grassi R, Granata F, Izzo F, Petrillo A. Multidetector computer tomography in the pancreatic adenocarcinoma assessment: an update. Infect Agent Cancer 2016; 11:57. [PMID: 27891175 PMCID: PMC5111267 DOI: 10.1186/s13027-016-0105-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023] Open
Abstract
Ductal adenocarcinoma of the pancreas is one of the most aggressive forms of cancer, with only a minority of cases being resectable at the moment of their diagnosis. The accurate detection and characterization of pancreatic carcinoma is very important for patient management. Multidetector-row computed tomography (MDCT) has become the cross-sectional modality of choice in the diagnosis, staging, treatment planning, and follow-up of patients with pancreatic tumors. However, approximately 11% of ductal adenocarcinomas still remain undetected at MDCT because of the lack of attenuation gradient between the lesion and the adjacent pancreatic parenchyma. In this systematic literature review we investigate the current evolution of the CT technique, limitations, and perspectives in the evaluation of pancreatic carcinoma.
Collapse
Affiliation(s)
- Vincenza Granata
- Department of Diagnostic Imaging, radiant and metabolic Therapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Roberta Fusco
- Department of Diagnostic Imaging, radiant and metabolic Therapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Orlando Catalano
- Department of Diagnostic Imaging, radiant and metabolic Therapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Sergio Venanzio Setola
- Department of Diagnostic Imaging, radiant and metabolic Therapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | - Mauro Piccirillo
- Department of Hepato-Biliary Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Raffaele Palaia
- Department of Hepato-Biliary Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Roberto Grassi
- Departement of Radiology, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Francesco Granata
- Departement of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Lazio, Italy
| | - Francesco Izzo
- Department of Hepato-Biliary Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Antonella Petrillo
- Department of Diagnostic Imaging, radiant and metabolic Therapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| |
Collapse
|
15
|
Shen Y, Hu X, Zou X, Zhu D, Li Z, Hu D. Did low tube voltage CT combined with low contrast media burden protocols accomplish the goal of "double low" for patients? An overview of applications in vessels and abdominal parenchymal organs over the past 5 years. Int J Clin Pract 2016; 70 Suppl 9B:B5-B15. [PMID: 27577514 DOI: 10.1111/ijcp.12861] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/15/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Imaging communities have already reached a consensus that the radiation dose of computed tomography (CT) should be reduced as much as reasonably achievable to lower population risks. Increasing attention is being paid to iodinated contrast media (CM) induced nephrotoxicity (CIN); a decrease in the intake of iodinated CM is required by increasingly more radiologists. Theoretically, the radiation dose varies with the tube current time and square of the tube voltage, with higher iodine contrast at low photon energies (Huda et al. [2000] Radiology, 21 7, 430-435).The use of low tube voltage is a promising strategy to reduce both the radiation dose and CM burden. The term 'double low' has been coined to describe scanning protocols that reduce radiation dose and iodine intake synchronously. These protocols are becoming increasingly popular in the clinical setting. PURPOSE The aim of this review was to describe all original studies using the 'double low' strategy in the last 5 years. METHODS We searched an online electronic database (PubMed) from January 2011 to December 2015 for original studies published on the relationship of low tube voltage with low radiation dose and low iodine contrast media burden in patients undergoing CT scans. Studies that failed to reduce radiation dose or iodine CM burden were excluded in this study. RESULTS Thirty-seven studies aimed at reducing radiation dose using low tube voltage combined with iodine CM reduced protocols were included in this study. Most studies evaluated conditions associated with arteries. Four were cerebral and neck computed tomography angiography (CTA) studies, 15 were pulmonary CTA (pCTA) and coronary CTA (cCTA) studies, one concerned myocardial perfusion, five studies focused on the thoracic and abdominal aorta, and one investigated renal arteries. Three studies consisted of CT venography (CTV) of the pelvis and lower extremities. Six publications examined the liver, and two focused on the kidney. CONCLUSION Overall, this review demonstrates that the low tube voltage CT protocol is a powerful tool to reduce the radiation dose in CTA, especially with pCTA and cCTA.
Collapse
Affiliation(s)
- Yaqi Shen
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xuemei Hu
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xianlun Zou
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Di Zhu
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhen Li
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Daoyu Hu
- Departments of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Kalra MK, Sodickson AD, Mayo-Smith WW. CT Radiation: Key Concepts for Gentle and Wise Use. Radiographics 2016; 35:1706-21. [PMID: 26466180 DOI: 10.1148/rg.2015150118] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Use of computed tomography (CT) in medicine comes with the responsibility of its appropriate (wise) and safe (gentle) application to obtain required diagnostic information with the lowest possible dose of radiation. CT provides useful information that may not be available with other imaging modalities in many clinical situations in children and adults. Inappropriate or excessive use of CT should be avoided, especially if required information can be obtained in an accurate and time-efficient manner with other modalities that require a lower radiation dose, or non-radiation-based imaging modalities such as ultrasonography and magnetic resonance imaging. In addition to appropriate use of CT, the radiology community also must monitor scanning practices and protocols. When appropriate, high-contrast regions and lesions should be scanned with reduced dose, but overly zealous dose reduction should be avoided for assessment of low-contrast lesions. Patients' cross-sectional body size should be taken into account to deliver lower radiation dose to smaller patients and children. Wise use of CT scanning with gentle application of radiation dose can help maximize the diagnostic value of CT, as well as address concerns about potential risks of radiation. In this article, key concepts in CT radiation dose are reviewed, including CT dose descriptors; radiation doses from CT procedures; and factors and technologies that affect radiation dose and image quality, including their use in creating dose-saving protocols. Also discussed are the contributions of radiation awareness campaigns such as the Image Gently and Image Wisely campaigns and the American College of Radiology Dose Index Registry initiatives.
Collapse
Affiliation(s)
- Mannudeep K Kalra
- From the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (M.K.K.); and Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 and Harvard Medical School, Boston, Mass (A.D.S., W.W.M.S.)
| | - Aaron D Sodickson
- From the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (M.K.K.); and Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 and Harvard Medical School, Boston, Mass (A.D.S., W.W.M.S.)
| | - William W Mayo-Smith
- From the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass (M.K.K.); and Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115 and Harvard Medical School, Boston, Mass (A.D.S., W.W.M.S.)
| |
Collapse
|
17
|
Minimally Required Iodine Dose for the Detection of Hypervascular Hepatocellular Carcinoma on 80-kVp CT. AJR Am J Roentgenol 2016; 206:518-25. [PMID: 26901007 DOI: 10.2214/ajr.15.15138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The objective of our study was to determine the iodine dose per unit of body weight (BW) or body surface area (BSA) that is minimally required to detect hypervascular hepatocellular carcinoma (HCC) on 80-kVp CT. SUBJECTS AND METHODS One hundred eleven patients (78 men and 33 women; mean age, 68 years; age range, 43-85 years) with chronic hepatitis were randomized into three groups with different iodine loads (0.5, 0.4, and 0.3 g I/kg BW) and underwent contrast-enhanced CT at 80 kVp. Enhancement of the liver and of hypervascular HCCs was quantitatively and qualitatively assessed on hepatic arterial, portal venous, and equilibrium phase images and compared between the groups. Values for iodine dose per unit of BSA (g I/m(2)) were also computed and analyzed. RESULTS No significant differences in the contrast-to-noise ratio (CNR) of hypervascular HCCs in any phase were found between the groups (p = 0.34-0.99). In the portal venous phase, the mean increase in hepatic contrast enhancement (ΔHU) of the 0.5 g I/kg group (80.3 HU) was higher than those of the 0.4 g I/kg (63.4 HU) and 0.3 g I/kg (53.3 HU) groups (p < 0.001). Linear correlation equations for the increase in hepatic contrast enhancement were as follows: ΔHU = 5.9 + 150.0 × IL(BW) (r = 0.69, p < 0.001), where IL(BW) is the iodine load per unit of BW (g I/kg), and ΔHU = 13.0 + 3.68 × IL(BSA) (r = 0.66, p < 0.001), where IL(BSA) is the iodine load pre unit of BSA (g I/m(2)). CONCLUSION The minimal iodine dose required to achieve a tumor-to-liver CNR that is acceptable for the detection of hypervascular HCCs on 80-kVp CT was 0.3 g I/kg BW or 11.0 g I/m(2) BSA.
Collapse
|
18
|
Noda Y, Goshima S, Miyoshi T, Watanabe H, Kawada H, Kawai N, Koyasu H, Kanematsu M, Matsuo M, T Bae K. Determination of the least amount of iodine load required for the detection of pancreatic adenocarcinoma at 80-kVp CT. Eur J Radiol 2016; 85:901-5. [DOI: 10.1016/j.ejrad.2016.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
19
|
Image Quality and Current Techniques for Dose Optimization in Abdominal CT: What Every Radiologist Should Know. CURRENT RADIOLOGY REPORTS 2015. [DOI: 10.1007/s40134-015-0098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Low-Dose Pelvic Computed Tomography Using Adaptive Iterative Dose Reduction 3-Dimensional Algorithm. J Comput Assist Tomogr 2015; 39:629-34. [DOI: 10.1097/rct.0000000000000242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|