1
|
Wolman DN, Kuraitis G, Sussman E, Pulli B, Wouters A, Wang J, Wang A, Lansberg MG, Heit JJ. Dual-Energy CTA Iodine Map Reconstructions Improve Visualization of Residual Cerebral Aneurysms following Endovascular Coiling. AJNR Am J Neuroradiol 2024; 45:1220-1226. [PMID: 39089873 PMCID: PMC11392370 DOI: 10.3174/ajnr.a8305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/01/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND PURPOSE Material-specific reconstructions of dual-energy CTA (DECTA) can highlight iodinated contrast, subtract predefined materials, and reduce metal artifact. We present a technique to improve detection of residual aneurysms after endovascular coiling by which iodine-map DECTA (IM-DECTA) reconstructions subtract platinum coil artifacts in MIP images (MIP IM-DECTA) and assess if IM-DECTA offers improved detection over conventional CTA (CCTA) or monoenergetic DECTA. MATERIALS AND METHODS We included consecutive patients who underwent endovascular aneurysm coiling with follow-up DECTA and DSA within 24 months. DECTA was performed at 80- and 150-kVp tube voltages on a rapid kV-switching single-source Revolution scanner. CCTA and IM-DECTA series were reconstructed. Reference-standard DSA was compared with CCTA, 50- and 70-keV virtual monochromatic DECTA, IM-DECTA, and MIP IM-DECTA. Blinded to DSA data, cross-section images were reviewed in consensus by 3 neurointerventionalists for residual aneurysms and assigned modified Raymond-Roy classifications (mRRC). Sensitivity, specificity, and accuracy of each series is reported relative to DSA, and single-factor ANOVA and pair-wise Spearman correlation coefficients compared the accuracy of each series. Readers provided ROI measurements of HU deviation adjacent to the aneurysm neck for quantitative noise assessment and qualitatively scored each series on a 3-point Likert-style scale ranging from uninterpretable to excellent image quality. RESULTS Twenty-one patients with 25 coiled aneurysms were included. Mean time from DECTA to DSA was 286 ± 212 days. IM-DECTA and MIP IM-DECTA most sensitively (89% and 90%) and specifically (93% and 93%) detected residual aneurysms relative to CCTA (6% and 86%). Relative to DSA, IM-DECTA and MIP IM-DECTA most accurately detected (92% versus 28% for CCTA) and classified residual aneurysms by mRRC (ρC-CTA = -0.08; ρIM = 0.50; ρIM-MIP = 0.55; P < .001). Reader consensus reported the best image quality at the aneurysm neck with IM-DECTA and MIP IM-DECTA, with 56% of CCTAs considered uninterpretable versus 0% of IM-DECTAs, and image noise was significantly lower for IM-DECTA (27.9 ± 3.6 HU) or MIP IM-DECTA (26.8 ± 3.5 HU) than CCTA (103.2 ± 13.3 HU; P < .001). CONCLUSIONS MIP IM-DECTA can subtract coil mass artifact and is more sensitive and specific than CCTA for the detection of residual aneurysms after endovascular coiling.
Collapse
Affiliation(s)
- Dylan N Wolman
- From the Department of Diagnostic Imaging (D.N.W.), The Warren Alpert School of Medicine at Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Gabriella Kuraitis
- Department of Radiology (G.K., B.P., A.Wouters, J.W., A.Wang, J.J.H.), Neuroimaging and Neurointervention Section, Stanford University Hospital, Palo Alto, California
| | - Eric Sussman
- Department of Neurosurgery (E.S.), Hartford Hospital, Ayer Neuroscience Institute, Hartford, Connecticut
| | - Benjamin Pulli
- Department of Radiology (G.K., B.P., A.Wouters, J.W., A.Wang, J.J.H.), Neuroimaging and Neurointervention Section, Stanford University Hospital, Palo Alto, California
| | - Anke Wouters
- Department of Radiology (G.K., B.P., A.Wouters, J.W., A.Wang, J.J.H.), Neuroimaging and Neurointervention Section, Stanford University Hospital, Palo Alto, California
| | - Jia Wang
- Department of Radiology (G.K., B.P., A.Wouters, J.W., A.Wang, J.J.H.), Neuroimaging and Neurointervention Section, Stanford University Hospital, Palo Alto, California
| | - Adam Wang
- Department of Radiology (G.K., B.P., A.Wouters, J.W., A.Wang, J.J.H.), Neuroimaging and Neurointervention Section, Stanford University Hospital, Palo Alto, California
| | - Maarten G Lansberg
- Department of Neurology (M.G.L.), Stanford University Hospital, Palo Alto, California
| | - Jeremy J Heit
- Department of Radiology (G.K., B.P., A.Wouters, J.W., A.Wang, J.J.H.), Neuroimaging and Neurointervention Section, Stanford University Hospital, Palo Alto, California
| |
Collapse
|
2
|
Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol 2024; 170:111276. [PMID: 38142571 DOI: 10.1016/j.ejrad.2023.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Metal artifacts degrade CT image quality, hampering clinical assessment. Numerous metal artifact reduction methods are available to improve the image quality of CT images with metal implants. In this review, an overview of traditional methods is provided including the modification of acquisition and reconstruction parameters, projection-based metal artifact reduction techniques (MAR), dual energy CT (DECT) and the combination of these techniques. Furthermore, the additional value and challenges of novel metal artifact reduction techniques that have been introduced over the past years are discussed such as photon counting CT (PCCT) and deep learning based metal artifact reduction techniques.
Collapse
Affiliation(s)
- Mark Selles
- Department of Radiology, Isala, 8025 AB Zwolle, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands.
| | | | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | | | - Ruud H H Wellenberg
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, the Netherlands; Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|
4
|
Hostetter J, Miller TR, Gandhi D. Imaging for Treated Aneurysms (Including Clipping, Coiling, Stents, Flow Diverters). Neuroimaging Clin N Am 2021; 31:251-263. [PMID: 33902878 DOI: 10.1016/j.nic.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intracranial aneurysms are common in the adult population and carry a risk of rupture leading to catastrophic subarachnoid hemorrhage. Treatment of aneurysms has evolved significantly, with the introduction of new techniques and devices for minimally invasive and endovascular approaches. Follow-up imaging after aneurysm treatment is standard of care to monitor for recurrence or other complications, and the preferred imaging modality and schedule for follow-up are areas of active research. The modality and follow-up schedule should be tailored to treatment technique, aneurysm characteristics, and patient factors.
Collapse
Affiliation(s)
- Jason Hostetter
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD 21201, USA.
| | - Timothy R Miller
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD 21201, USA
| | - Dheeraj Gandhi
- Neurology and Neurosurgery, Department of Radiology, Interventional Neuroradiology, CMIT Center, University of Maryland School of Medicine, 22 S Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Gibney B, Redmond CE, Byrne D, Mathur S, Murray N. A Review of the Applications of Dual-Energy CT in Acute Neuroimaging. Can Assoc Radiol J 2020; 71:253-265. [PMID: 32106693 DOI: 10.1177/0846537120904347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dual-energy computed tomography (CT) is a promising tool with increasing availability and multiple emerging and established clinical applications in neuroradiology. With its ability to allow characterization of materials based on their differential attenuation when imaged at two different energy levels, dual-energy CT can help identify the composition of brain, neck, and spinal components. Virtual monoenergetic imaging allows a range of simulated single energy-level reconstructions to be created with postprocessing. Low-energy reconstructions can aid identification of edema, ischemia, and subtle lesions due to increased soft tissue contrast as well as increasing contrast-to-noise ratios on angiographic imaging. Higher energy reconstructions can reduce image artifact from dental amalgam, aneurysm clips and coils, spinal hardware, dense contrast, and dense bones. Differentiating iodine from hemorrhage may help guide management of patients after thrombectomy and aid diagnosis of enhancing tumors within parenchymal hemorrhages. Iodine quantification may predict hematoma expansion in aneurysmal bleeds and outcomes in traumatic brain injury. Calcium and bone subtraction can be used to distinguish hemorrhage from brain parenchymal mineralization as well as improving visualization of extra-axial lesions and vessels adjacent to dense plaque or skull. This article reviews the basics of dual-energy CT and highlights many of its clinical applications in the evaluation of acute neurological presentations.
Collapse
Affiliation(s)
- Brian Gibney
- Division of Emergency Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ciaran E Redmond
- Division of Emergency Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Danielle Byrne
- Division of Neuroradiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Shobhit Mathur
- Department of Medical Imaging, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicolas Murray
- Division of Emergency Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|