1
|
Zhang L, Pang G, Zhang J, Yuan Z. Perfusion parameters of triphasic computed tomography hold preoperative prediction value for microvascular invasion in hepatocellular carcinoma. Sci Rep 2023; 13:8629. [PMID: 37244941 DOI: 10.1038/s41598-023-35913-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
The purpose of this study was to evaluate perfusion parameters of triphasic computed tomography (CT) scans in predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). All patients were pathologically diagnosed as HCC and underwent triple-phase enhanced CT imaging, which was used to calculate the blood perfusion parameters of hepatic arterial supply perfusion (HAP), portal vein blood supply perfusion (PVP), hepatic artery perfusion Index (HPI), and arterial enhancement fraction (AEF). Receiver operating characteristic (ROC) curve was used to evaluate the performance. The mean values of PVP(Min), AEF(Min), the difference in PVP, HPI and AEF related parameters, the relative PVP(Min) and AEF(Min) in MVI negative group were significantly higher than those in MVI positive group, while for the difference in HPI(Max), the relative HPI(Max) and AEF(Max), the value of MVI positive group significantly higher than that of negative group. The combination of PVP, HPI and AEF had the highest diagnostic efficacy. The two parameters related to HPI had the highest sensitivity, while the combination of PVP related parameters had higher specificity. A combination of perfusion parameters in patients with HCC derived from traditional triphasic CT scans can be used as a preoperative biomarker for predicting MVI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guodong Pang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Jing Zhang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Bressem KK, Vahldiek JL, Erxleben C, Geyer B, Poch F, Shnayien S, Lehmann KS, Hamm B, Niehues SM. Comparison of different 4D CT-Perfusion algorithms to visualize lesions after microwave ablation in an in vivo porcine model. Int J Hyperthermia 2019; 36:1098-1107. [DOI: 10.1080/02656736.2019.1679894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Keno K. Bressem
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Janis L. Vahldiek
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Christoph Erxleben
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Beatrice Geyer
- Department of Surgery, Charité-University Medicine Berlin, Berlin, Germany
| | - Franz Poch
- Department of Surgery, Charité-University Medicine Berlin, Berlin, Germany
| | - Seyd Shnayien
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Kai S. Lehmann
- Department of Surgery, Charité-University Medicine Berlin, Berlin, Germany
| | - B. Hamm
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Stefan M. Niehues
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ng CS, Wei W, Duran C, Ghosh P, Anderson EF, Chandler AG, Yao JC. CT perfusion in normal liver and liver metastases from neuroendocrine tumors treated with targeted antivascular agents. Abdom Radiol (NY) 2018; 43:1661-1669. [PMID: 29075824 DOI: 10.1007/s00261-017-1367-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess the effects of bevacizumab and everolimus, individually and combined, on CT perfusion (CTp) parameters in liver metastases from neuroendocrine tumors (mNET) and normal liver. METHODS This retrospective study comprised 27 evaluable patients with mNETs who had participated in a two-arm randomized clinical trial of mono-therapy with bevacizumab (Arm B) or everolimus (Arm E) for 3 weeks, followed by combination of both targeted agents. CTp was undertaken at baseline, 3 and 9 weeks, to evaluate blood flow (BF), blood volume (BV), mean transit time (MTT), permeability surface area product (PS), and hepatic arterial fraction (HAF) of mNET and normal liver, using a dual-input distributed parameter physiological model. Linear mixed models were used to estimate and compare CTp parameter values between time-points. RESULTS In tumor, mono-therapy with bevacizumab significantly reduced BV (p = 0.05); everolimus had no effects on CTp parameters. Following dual-therapy, BV and BF were significantly lower than baseline in both arms (p ≤ 0.04), and PS was significantly lower in Arm E (p < 0.0001). In normal liver, mono-therapy with either agent had no significant effects on CTp parameters: dual-therapy significantly reduced BV, MTT, and PS, and increased HAF, relative to baseline in Arm E (p ≤ 0.04); in Arm B, only PS reduced (p = 0.04). CONCLUSIONS Bevacizumab and everolimus, individually and when combined, have significant and differential effects on CTp parameters in mNETs and normal liver, which is evident soon after starting therapy. CTp may offer an early non-invasive means to investigate the effects of drugs in tumor and normal tissue.
Collapse
|
5
|
Mulé S, Pigneur F, Quelever R, Tenenhaus A, Baranes L, Richard P, Tacher V, Herin E, Pasquier H, Ronot M, Rahmouni A, Vilgrain V, Luciani A. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma? Eur Radiol 2017; 28:1977-1985. [PMID: 29168007 DOI: 10.1007/s00330-017-5151-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. METHODS In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) < 0.05 was considered significant. RESULTS Mean HCC late-arterial and portal iodine concentrations were 22.7±12.7 mg/mL and 18.7±8.3 mg/mL, respectively. Late-arterial iodine concentration was significantly related to BV (mixed-effects model F statistic (F)=28.52, p<0.0001), arterial BF (aBF, F=17.62, p<0.0001), hepatic perfusion index (F=28.24, p<0.0001), positive enhancement integral (PEI, F=66.75, p<0.0001) and mean slope of increase (F=32.96, p<0.0001), while portal-venous iodine concentration was mainly related to BV (F=29.68, p<0.0001) and PEI (F=66.75, p<0.0001). CONCLUSIONS In advanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. KEY POINTS • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.
Collapse
Affiliation(s)
- Sébastien Mulé
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.
| | - Frédéric Pigneur
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | - Ronan Quelever
- GE Healthcare, 283 rue de la Minière, 78530, Buc, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, Orsay, France.,Biostatistics and bioinformatics core facility, Brain and Spine Institute, Paris, France
| | - Laurence Baranes
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | | | - Vania Tacher
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France.,, INSERM IMRB, U 955, Equipe 18, Creteil, France
| | - Edouard Herin
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | - Hugo Pasquier
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France
| | - Maxime Ronot
- Service de Radiologie, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118, Clichy, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - Alain Rahmouni
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France
| | - Valérie Vilgrain
- Service de Radiologie, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118, Clichy, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - Alain Luciani
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France.,, INSERM IMRB, U 955, Equipe 18, Creteil, France
| |
Collapse
|
6
|
Bretas EAS, Torres US, Torres LR, Bekhor D, Saito Filho CF, Racy DJ, Faggioni L, D'Ippolito G. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages. Br J Radiol 2017; 90:20170214. [PMID: 28830195 DOI: 10.1259/bjr.20170214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the agreement between the measurements of perfusion CT parameters in normal livers by using two different software packages. METHODS This retrospective study was based on 78 liver perfusion CT examinations acquired for detecting suspected liver metastasis. Patients with any morphological or functional hepatic abnormalities were excluded. The final analysis included 37 patients (59.7 ± 14.9 y). Two readers (1 and 2) independently measured perfusion parameters using different software packages from two major manufacturers (A and B). Arterial perfusion (AP) and portal perfusion (PP) were determined using the dual-input vascular one-compartmental model. Inter-reader agreement for each package and intrareader agreement between both packages were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. RESULTS Inter-reader agreement was substantial for AP using software A (ICC = 0.82) and B (ICC = 0.85-0.86), fair for PP using software A (ICC = 0.44) and fair to moderate for PP using software B (ICC = 0.56-0.77). Intrareader agreement between software A and B ranged from slight to moderate (ICC = 0.32-0.62) for readers 1 and 2 considering the AP parameters, and from fair to moderate (ICC = 0.40-0.69) for readers 1 and 2 considering the PP parameters. CONCLUSION At best there was only moderate agreement between both software packages, resulting in some uncertainty and suboptimal reproducibility. Advances in knowledge: Software-dependent factors may contribute to variance in perfusion measurements, demanding further technical improvements. AP measurements seem to be the most reproducible parameter to be adopted when evaluating liver perfusion CT.
Collapse
Affiliation(s)
- Elisa Almeida Sathler Bretas
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil.,2 Department of Radiology, Grupo Fleury, São Paulo, Brazil
| | | | - Lucas Rios Torres
- 2 Department of Radiology, Grupo Fleury, São Paulo, Brazil.,3 Department of Imaging, Hospital Beneficência Portuguesa, São Paulo, Brazil
| | - Daniel Bekhor
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Douglas Jorge Racy
- 3 Department of Imaging, Hospital Beneficência Portuguesa, São Paulo, Brazil
| | - Lorenzo Faggioni
- 4 Department of Diagnostic and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Giuseppe D'Ippolito
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil.,2 Department of Radiology, Grupo Fleury, São Paulo, Brazil
| |
Collapse
|
7
|
Ferrari M, Huellner M, Pauli C, Seifert B, Danuser H, Veit-Haibach P, Mattei A. Assessment of prostate cancer with integrated CT-perfusion using a sector-wise approach. Turk J Urol 2017; 43:152-157. [PMID: 28717538 DOI: 10.5152/tud.2017.11455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The role of computed tomography perfusion (CTP) in characterizing primary prostate cancer (PCa) is not definitely known. The aim of the present study was to investigate the relationship between CTP parameters and histopathological features of PCa tissue, using a sector-wise approach. MATERIAL AND METHODS Fifty-one patients with biopsy-proven PCa underwent prospectively a CTP scan prior to radical prostatectomy. Blood flow (BF), mean blood volume (BV) and mean transit time (MTT) were calculated, with the prostate being divided into eight sectors. Corresponding sector-wise histopathological analysis of whole-mount prostatectomy specimens was performed to determine tumoral area (mm2), mean microvessel density (MVD), Gleason patterns (primary, secondary) and total Gleason score. Spearman's rank correlation coefficient was used to analyze the association between CTP and histopathological parameters. RESULTS BF correlated weakly with tumoral area [ρs coefficient (p-value): 0.25 (0.00)] and MVD [ρs coefficient (p-value): 0.23 (0.00)]. No valuable correlation was found between CTP parameters and primary and secondary Gleason patterns, whereas total Gleason score was weakly correlated with BV [ρs coefficient (p-value): 0.22 (0.00)] and MTT [ρs coefficient (p-value): 0.25 (0.00)]. CONCLUSION BF correlates weakly with size and vascularity of PCa. There is a need for further studies to elucidate the association between CTP parameters and other histopathological parameters.
Collapse
Affiliation(s)
- Matteo Ferrari
- Department of Urology, Lucerne Cantonal Hospital, Switzerland
| | - Martin Huellner
- Department of Medical Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Burkhardt Seifert
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | | - Patrick Veit-Haibach
- Department of Medical Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Agostino Mattei
- Department of Urology, Lucerne Cantonal Hospital, Switzerland
| |
Collapse
|
8
|
Feasibility of 4D perfusion CT imaging for the assessment of liver treatment response following SBRT and sorafenib. Adv Radiat Oncol 2016; 1:194-203. [PMID: 28740888 PMCID: PMC5514015 DOI: 10.1016/j.adro.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
Objectives To evaluate the feasibility of 4-dimensional perfusion computed tomography (CT) as an imaging biomarker for patients with hepatocellular carcinoma and metastatic liver disease. Methods and materials Patients underwent volumetric dynamic contrast-enhanced CT on a 320-slice scanner before and during stereotactic body radiation therapy and sorafenib, and at 1 and 3 months after treatment. Quiet free breathing was used in the CT acquisition and multiple techniques (rigid or deformable registration as well as outlier removal) were applied to account for residual liver motion. Kinetic modeling was performed on a voxel-by-voxel basis in the gross tumor volume and normal liver resulting in 3-dimensional parameter maps of blood perfusion, capillary permeability, blood volume, and mean transit time. Perfusion characteristics in the tumor and adjacent liver were correlated with radiation dose distributions to evaluate dose-response. Paired t tests assessed change in spatial and histogram parameters from baseline to different time points during and after treatment. Technique reproducibility as well as the impact of arterial and portal vein input functions was also investigated using intra- and inter-subject variance and Bland-Altman analysis. Results Quantitative perfusion parameters were reproducible (±5.7%; range, 2%-10%) depending on tumor/normal liver type and kinetic parameter. Statistically significant reductions in tumor perfusion were measurable over the course of treatment and as early as 1 week after sorafenib administration (P < .05). Marked liver parenchyma perfusion reduction was seen with a strong dose-response effect (R2 = 0.95) that increased significantly over the course treatment. Conclusions The proposed methodology demonstrated feasibility of evaluating spatiotemporal changes in liver tumor perfusion and normal liver function following antiangiogenic therapy and radiation treatment warranting further evaluation of biomarker prognostication.
Collapse
|
9
|
Reproducibility of VPCT parameters in the normal pancreas: comparison of two different kinetic calculation models. Acad Radiol 2015; 22:1099-105. [PMID: 26112056 DOI: 10.1016/j.acra.2015.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023]
Abstract
RATIONALE AND OBJECTIVES To assess the reproducibility of volume computed tomographic perfusion (VPCT) measurements in normal pancreatic tissue using two different kinetic perfusion calculation models at three different time points. MATERIALS AND METHODS Institutional ethical board approval was obtained for retrospective analysis of pancreas perfusion data sets generated by our prospective study for liver response monitoring to local therapy in patients experiencing unresectable hepatocellular carcinoma, which was approved by the institutional review board. VPCT of the entire pancreas was performed in 41 patients (mean age, 64.8 years) using 26 consecutive volume measurements and intravenous injection of 50 mL of iodinated contrast at a flow rate of 5 mL/s. Blood volume(BV) and blood flow (BF) were calculated using two mathematical methods: maximum slope + Patlak analysis versus deconvolution method. Pancreas perfusion was calculated using two volume of interests. Median interval between the first and the second VPCT was 2 days and between the second and the third VPCT 82 days. Variability was assessed with within-patient coefficients of variation (CVs) and Bland-Altman analyses. Interobserver agreement for all perfusion parameters was calculated using intraclass correlation coefficients (ICCs). RESULTS BF and BV values varied widely by method of analysis as did within-patient CVs for BF and BV at the second versus the first VPCT by 22.4%/50.4% (method 1) and 24.6%/24.0% (method 2) measured in the pancreatic head and 18.4%/62.6% (method 1) and 23.8%/28.1% (method 2) measured in the pancreatic corpus and at the third versus the first VPCT by 21.7%/61.8% (method 1) and 25.7%/34.5% (method 2) measured also in the pancreatic head and 19.1%/66.1% (method 1) and 22.0%/31.8% (method 2) measured in the pancreatic corpus, respectively. Interobserver agreement measured with ICC shows fair-to-good reproducibility. CONCLUSIONS VPCT performed with the presented examinational protocol is reproducible and can be used for monitoring purposes. Best reproducibility was obtained with both methods for BF and with method 2 also for BV data for both follow-up studies.
Collapse
|
10
|
Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology 2014; 272:322-44. [PMID: 25058132 DOI: 10.1148/radiol.14130091] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging-such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods-remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented.
Collapse
Affiliation(s)
- Se Hyung Kim
- From the Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621 (S.H.K., A.K., J.K.W.); and Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea (S.H.K.)
| | | | | |
Collapse
|
11
|
Singh J, Sharma S, Aggarwal N, Sood RG, Sood S, Sidhu R. Role of Perfusion CT Differentiating Hemangiomas from Malignant Hepatic Lesions. J Clin Imaging Sci 2014; 4:10. [PMID: 24744967 PMCID: PMC3988591 DOI: 10.4103/2156-7514.127959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 02/05/2014] [Indexed: 01/02/2023] Open
Abstract
Objective: The purpose of the study was to determine the role of computed tomography (CT) perfusion in differentiating hemangiomas from malignant hepatic lesions. Materials and Methods: This study was approved by the institutional review board. All the patients provided informed consent. CT perfusion was performed with 64 multidetector CT (MDCT) scanner on 45 patients including 27 cases of metastasis, 9 cases of hepatocellular carcinoma (HCC), and 9 cases of hemangiomas. A 14 cm span of the liver was covered during the perfusion study. Data was analyzed to calculate blood flow (BF), blood volume (BV), permeability surface area product (PS), mean transit time (MTT), hepatic arterial fraction (HAF), and induced residue fraction time of onset (IRFTO). CT perfusion parameters at the periphery of lesions and background liver parenchyma were compared. Results: Significant changes were observed in the perfusion parameters at the periphery of different lesions. Of all the perfusion parameters BF, HAF, and IRFTO showed most significant changes. In our study we found: BF of more than 400 ml/100 g/min at the periphery of the hemangiomas showed sensitivity of 88.9%, specificity of 83.3%, positive predictive value (PPV) of 57.1%, and negative predictive value (NPV) of 96.7% in differentiating hemangiomas from hepatic malignancy; HAF of more than 60% at the periphery of hemangiomas showed sensitivity of 77.8%, specificity of 86.1%, PPV of 58.3% and NPV of 93.9% in differentiating hemangiomas from hepatic malignancy; IRFTO of more than 3 s at the periphery of hemangiomas showed sensitivity of 77.8%, specificity of 86.1%, PPV of 58.3%, and NPV of 93.9% in differentiating hemangiomas from hepatic malignancy. Conclusion: Perfusion CT is a helpful tool in differentiating hemangiomas from hepatic malignancy by its ability to determine changes in perfusion parameters of the lesions.
Collapse
Affiliation(s)
- Jagjeet Singh
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Sanjiv Sharma
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Neeti Aggarwal
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - R G Sood
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Shikha Sood
- Department of Radiodiagnosis and Intervention Radiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Ravinder Sidhu
- Department of Imaging Sciences, University of Rochester Medical Center, New York, USA
| |
Collapse
|