1
|
Uwano I, Sasaki M, Kudo K, Boutelier T, Kameda H, Mori F, Yamashita F. Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study. Magn Reson Med Sci 2017; 16:32-37. [PMID: 27001394 PMCID: PMC5600041 DOI: 10.2463/mrms.mp.2015-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. METHODS The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. RESULTS The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. CONCLUSIONS Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Collapse
Affiliation(s)
- Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
| | | | | | | | | | | | | |
Collapse
|
2
|
Austein F, Riedel C, Kerby T, Meyne J, Binder A, Lindner T, Huhndorf M, Wodarg F, Jansen O. Comparison of Perfusion CT Software to Predict the Final Infarct Volume After Thrombectomy. Stroke 2016; 47:2311-7. [DOI: 10.1161/strokeaha.116.013147] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Computed tomographic perfusion represents an interesting physiological imaging modality to select patients for reperfusion therapy in acute ischemic stroke. The purpose of our study was to determine the accuracy of different commercial perfusion CT software packages (Philips (A), Siemens (B), and RAPID (C)) to predict the final infarct volume (FIV) after mechanical thrombectomy.
Methods—
Single-institutional computed tomographic perfusion data from 147 mechanically recanalized acute ischemic stroke patients were postprocessed. Ischemic core and FIV were compared about thrombolysis in cerebral infarction (TICI) score and time interval to reperfusion. FIV was measured at follow-up imaging between days 1 and 8 after stroke.
Results—
In 118 successfully recanalized patients (TICI 2b/3), a moderately to strongly positive correlation was observed between ischemic core and FIV. The highest accuracy and best correlation are shown in early and fully recanalized patients (Pearson
r
for A=0.42, B=0.64, and C=0.83;
P
<0.001). Bland–Altman plots and boxplots demonstrate smaller ranges in package C than in A and B. Significant differences were found between the packages about over- and underestimation of the ischemic core. Package A, compared with B and C, estimated more than twice as many patients with a malignant stroke profile (
P
<0.001). Package C best predicted hypoperfusion volume in nonsuccessfully recanalized patients.
Conclusions—
Our study demonstrates best accuracy and approximation between the results of a fully automated software (RAPID) and FIV, especially in early and fully recanalized patients. Furthermore, this software package overestimated the FIV to a significantly lower degree and estimated a malignant mismatch profile less often than other software.
Collapse
Affiliation(s)
- Friederike Austein
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Christian Riedel
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Tina Kerby
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Johannes Meyne
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Andreas Binder
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Thomas Lindner
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Monika Huhndorf
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Fritz Wodarg
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| | - Olav Jansen
- Departments of Radiology and Neuroradiology (F.A., C.R., T.K., T.L., M.H., F.W., O.J.) and Neurology (J.M., A.B.), University Hospital, Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|