1
|
Barile R, Rotondo C, Rella V, Trotta A, Cantatore FP, Corrado A. Fibrosis mechanisms in systemic sclerosis and new potential therapies. Postgrad Med J 2024:qgae169. [PMID: 39656890 DOI: 10.1093/postmj/qgae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Systemic sclerosis is a rare rheumatic disease characterized by immune cell activation, tissue fibrosis, and endothelial dysfunction. Extracellular matrix synthesis disorder causes widespread fibrosis, primarily in skin and internal organs. Various factors such as TGFβ, VEGF, Galectin-3, and signaling pathways like Wnt/β-catenin are involved in pathophysiological processes. Treatment lacks a unified approach but combines diverse modalities tailored to disease subtype and progression. Current therapeutic strategies include biologics, JAK inhibitors, and IL-6 pathway modulators. Monoclonal antibodies and hypomethylating agents demonstrate potential in fibrosis inhibition. This review focuses on emerging therapeutic evidence regarding drugs targeting collagen, cytokines, and cell surface molecules in systemic sclerosis, aiming to provide insight into potential innovative treatment strategies.
Collapse
Affiliation(s)
- Raffaele Barile
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Cinzia Rotondo
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Valeria Rella
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Antonello Trotta
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| |
Collapse
|
2
|
Piera-Velazquez S, Dillon ST, Gu X, Libermann TA, Jimenez SA. Aptamer proteomics of serum exosomes from patients with Primary Raynaud's and patients with Raynaud's at risk of evolving into Systemic Sclerosis. PLoS One 2022; 17:e0279461. [PMID: 36548367 PMCID: PMC9779033 DOI: 10.1371/journal.pone.0279461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A major unmet need for Systemic Sclerosis (SSc) clinical management is the lack of biomarkers for the early diagnosis of patients with Raynaud's Phenomenon at high risk of evolving into SSc. OBJECTIVE To identify proteins contained within serum exosomes employing an aptamer proteomic analysis that may serve to reveal patients with Raynaud's Phenomenon at risk of developing SSc. METHODS Exosomes were isolated from serum samples from patients with Primary Raynaud's Phenomenon and from patients with Raynaud's Phenomenon harbouring serum antinuclear antibodies (ANA) who may be at high risk of evolving into SSc. The expression of 1,305 proteins was quantified using SOMAscan aptamer proteomics, and associations of the differentially elevated or reduced proteins with the clinical subsets of Raynaud's Phenomenon were assessed. RESULTS Twenty one differentially elevated and one differentially reduced (absolute fold change >|1.3|) proteins were identified. Principal component analysis using these 22 most differentially expressed proteins resulted in excellent separation of the two Raynaud's Phenomenon clinical subsets. Remarkably, the most differentially elevated proteins are involved in enhanced inflammatory responses, immune cell activation and cell migration, and abnormal vascular functions. CONCLUSION Aptamer proteomic analysis of circulating exosomes identified differentially elevated or reduced proteins between Raynaud's Phenomenon at high risk of evolving into SSc and Primary Raynaud's Phenomenon patients. Some of these proteins are involved in relevant biological pathways that may play a role in SSc pathogenesis including enhanced inflammatory responses, immune cell activation, and endothelial cell and vascular abnormalities.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SAJ); (TAL)
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SAJ); (TAL)
| |
Collapse
|
3
|
Increased Expression of Galectin-3 in Skin Fibrosis: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232315319. [PMID: 36499646 PMCID: PMC9737805 DOI: 10.3390/ijms232315319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skin fibrosis is a hallmark of a wide array of dermatological diseases which can greatly impact the patients' quality of life. Galectin-3 (GAL-3) has emerged as a central regulator of tissue fibrosis, playing an important pro-fibrotic role in numerous organs. Various studies are highlighting its importance as a skin fibrotic diseases biomarker; however, there is a need for further studies that clarify its role. This paper aims to ascertain whether the expression of GAL-3 is increased in relevant in vitro and in vivo models of skin fibrosis. We studied the role of GAL-3 in vitro using normal human dermal fibroblasts (NHDF) and fibrocytes. In addition, we used a skin fibrosis murine model (BALB/c mice) and human biopsies of healthy or keloid tissue. GAL-3 expression was analyzed using real time PCR, Western blot and immunostaining techniques. We report a significantly increased expression of GAL-3 in NHDF and fibrocytes cell cultures following stimulation with transforming growth factor β1 (TGFβ1). In vivo, GAL-3 expression was increased in a murine model of systemic sclerosis and in human keloid biopsies. In sum, this study underlines the involvement of GAL-3 in skin fibrosis using several models of the disease and highlights its role as a relevant target.
Collapse
|
4
|
Sarrand J, Baglione L, Parisis D, Soyfoo M. The Involvement of Alarmins in the Pathogenesis of Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms23105671. [PMID: 35628481 PMCID: PMC9145074 DOI: 10.3390/ijms23105671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects exocrine glands, primarily the salivary and lachrymal glands. It is characterized by lymphoplasmacytic infiltration of the glandular tissues, ultimately leading to their dysfunction and destruction. Besides classic dry eyes and dry mouth defined as sicca syndrome, patients affected by the disease also typically display symptoms such as fatigue, pain and in more than 50% of cases, systemic manifestations such as arthritis, interstitial lung involvement, neurological involvement and an increased risk of lymphoma. The pathophysiological mechanisms underlying SS still remain elusive. The crucial role of innate immunity has been advocated in recent years regarding the pathogenesis of pSS, especially in the initiation and progression toward autoimmunity. Alarmins are endogenous molecules that belong to the large family of damage associated molecular pattern (DAMP). Alarmins are rapidly released, ensuing cell injury and interacting with pattern recognition receptors (PRR) such as toll-like receptors (TLR) to recruit and activate cells of the innate immune system and to promote adaptive immunity responses. This review highlights the current knowledge of various alarmins and their role in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
| | - Laurie Baglione
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
| | - Dorian Parisis
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
5
|
Vértes V, Porpáczy A, Nógrádi Á, Tőkés-Füzesi M, Hajdu M, Czirják L, Komócsi A, Faludi R. Galectin-3 and sST2: associations to the echocardiographic markers of the myocardial mechanics in systemic sclerosis - a pilot study. Cardiovasc Ultrasound 2022; 20:1. [PMID: 35042522 PMCID: PMC8764793 DOI: 10.1186/s12947-022-00272-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Progressive cardiac fibrosis is the central aspect of the myocardial involvement in systemic sclerosis (SSc). We hypothesized that circulating biomarkers of the cardiac fibrosis may be useful in the early diagnosis of the cardiac manifestation in this disease. Thus, we investigated the potential correlations between the levels of galectin-3, soluble suppression of tumorigenicity-2 (sST2) and the echocardiographic markers of the myocardial mechanics in SSc patients. METHODS Forty patients (57.3 ± 13.7 years, 36 female) were investigated. In addition to the conventional echocardiography, tissue Doppler and speckle tracking-derived strain techniques were used to assess the function of both ventricles and atria. To estimate the correlations between galectin-3 and sST2 levels and the echocardiographic variables, partial correlation method was used with age as correcting factor. RESULTS In age adjusted analysis galectin-3 level showed significant correlation with left ventricular global longitudinal strain (r = 0.460, p = 0.005); grade of left ventricular diastolic dysfunction (r = 0.394, p = 0.013); septal e' (r = - 0.369, p = 0.021); septal E/e' (r = 0.380, p = 0.017) and with the grade of mitral regurgitation (r = 0.323, p = 0.048). No significant correlation was found between sST2 levels and the echocardiographic variables. CONCLUSIONS Galectin-3 levels, but not sST2 levels show significant correlation with the parameters of the left ventricular systolic and diastolic function. Galectin-3 may be a useful biomarker for the screening and early diagnosis of SSc patients with cardiac involvement.
Collapse
Affiliation(s)
- Vivien Vértes
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Adél Porpáczy
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Ágnes Nógrádi
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Margit Tőkés-Füzesi
- grid.9679.10000 0001 0663 9479Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Máté Hajdu
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - László Czirják
- grid.9679.10000 0001 0663 9479Department of Rheumatology and Immunology, Medical School, University of Pécs, Akác u. 1, H-7632 Pécs, Hungary
| | - András Komócsi
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Réka Faludi
- Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| |
Collapse
|
6
|
Hromadka M, Baxa J, Seidlerova J, Miklik R, Rajdl D, Sudova V, Suchy D, Rokyta R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J Clin Med 2021; 10:jcm10225364. [PMID: 34830647 PMCID: PMC8620356 DOI: 10.3390/jcm10225364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction and objectives: Cardiac involvement in systemic sclerosis (SSc) patients affects mortality. Cardiac magnetic resonance (CMR) is capable of detecting structural changes, including diffuse myocardial fibrosis that may develop over time. Our aim was to evaluate myocardial structure and function changes using CMR in patients with SSc without known cardiac disease during a 5-year follow-up and find possible correlations with selected biomarkers. Methods: A total of 25 patients underwent baseline and follow-up CMR examinations according to a pre-specified protocol. Standard biochemistry, five biomarkers (hsTnI, NT-proBNP, galectin-3, sST2, and GDF-15), and disease-specific functional parameters enabling the classification of disease severity were also measured. Results: After five years, no patient suffered from manifest heart disease. Mean extracellular volume (ECV) and T1 mapping values did not change significantly (p ≥ 0.073). However, individual increases in native T1 time and ECV correlated with increased galectin-3 serum levels (r = 0.56; p = 0.0050, and r = 0.71; p = 0.0001, respectively). The progression of skin involvement assessed using the Rodnan skin score and a decrease in the diffusing capacity of the lungs were associated with increased GDF-15 values (r = 0.63; p = 0.0009, and r = −0.51; p = 0.011, respectively). Conclusions: During the 5-year follow-up, there was no new onset of heart disease observed in patients with SSc. However, in some patients, CMR detected progression of sub-clinical myocardial fibrosis that significantly correlated with elevated galectin-3 levels. GDF-15 values were found to be associated with disease severity progression.
Collapse
Affiliation(s)
- Milan Hromadka
- Department of Cardiology, University Hospital and Faculty of Medicine in Pilsen and Faculty Hospital, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (M.H.); (R.R.)
| | - Jan Baxa
- Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic;
| | - Jitka Seidlerova
- Internal Department II, University Hospital and Faculty of Medicine in Pilsen, Charles University, Edvarda Benese 1128/13, 305 99 Pilsen, Czech Republic;
| | - Roman Miklik
- Department of Cardiology, University Hospital and Faculty of Medicine in Pilsen and Faculty Hospital, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (M.H.); (R.R.)
- Correspondence:
| | - Dan Rajdl
- Department of Clinical Biochemistry and Hematology, University Hospital and Faculty of Medicine in Pilsen, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (D.R.); (V.S.)
| | - Vendula Sudova
- Department of Clinical Biochemistry and Hematology, University Hospital and Faculty of Medicine in Pilsen, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (D.R.); (V.S.)
| | - David Suchy
- Department of Clinical Pharmacology, Rheumatology, University Hospital and Faculty of Medicine in Pilsen, Charles University, Edvarda Benese 1128/13, 305 99 Pilsen, Czech Republic;
| | - Richard Rokyta
- Department of Cardiology, University Hospital and Faculty of Medicine in Pilsen and Faculty Hospital, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (M.H.); (R.R.)
| |
Collapse
|
7
|
He YS, Hu YQ, Xiang K, Chen Y, Feng YT, Yin KJ, Huang JX, Wang J, Wu ZD, Wang GH, Pan HF. Therapeutic potential of galectin-1 and galectin-3 in autoimmune diseases. Curr Pharm Des 2021; 28:36-45. [PMID: 34579628 DOI: 10.2174/1381612827666210927164935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Galectins are a highly conserved protein family that binds to β-galactosides. Different members of this family play a variety of biological functions in physiological and pathological processes such as angiogenesis, regulation of immune cell activity, and cell adhesion. Galectins are widely distributed and play a vital role both inside and outside cells. It can regulate homeostasis and immune function in vivo through mechanisms such as apoptosis. Recent studies indicate that galectins exhibit pleiotropic roles in inflammation. Furthermore, emerging studies have found that galectins are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D) and systemic sclerosis (SSc) by regulating cell adhesion, apoptosis, and other mechanisms. This review will briefly discuss the biological characteristics of the two most widely expressed and extensively explored members of the galectin family, galectin-1 and galectin-3, as well as their pathogenetic and therapeutic roles in autoimmune diseases. These information may provide a novel and promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Ya-Ting Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Kang-Jia Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Ji-Xiang Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Zheng-Dong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| | - Gui-Hong Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui. China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui. China
| |
Collapse
|
8
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Sundblad V, Gomez RA, Stupirski JC, Hockl PF, Pino MS, Laborde H, Rabinovich GA. Circulating Galectin-1 and Galectin-3 in Sera From Patients With Systemic Sclerosis: Associations With Clinical Features and Treatment. Front Pharmacol 2021; 12:650605. [PMID: 33959016 PMCID: PMC8093796 DOI: 10.3389/fphar.2021.650605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic Sclerosis (SSc) is a rheumatic disease characterized by fibrosis, microvascular damage and immune dysregulation. Two major subsets, limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc) can be defined, according to the extent of skin involvement. Increasing evidence indicates a role for galectins in immune and vascular programs, extracellular matrix remodeling and fibrosis, suggesting their possible involvement in SSc. Here, we determined serum levels of galectin (Gal)-1 and Gal-3 in 83 SSc patients (dcSSc n = 17; lcSSc n = 64; ssSSc n = 2), and evaluated their association with clinical manifestations of the disease. Patients with dcSSc showed lower Gal-3 levels, compared to lcSSc (p = 0.003), whereas no considerable difference in Gal-1 levels was detected between groups. Remarkably, higher concentrations of Gal-1 were associated with the presence of telangiectasias (p = 0.015), and higher concentrations Gal-3 were associated with telangiectasias (p = 0.021), diarrhea (p = 0.039) and constipation (p = 0.038). Moreover, lower Gal-3 levels were associated with the presence of tendinous retractions (p = 0.005). Patients receiving calcium blockers (p = 0.048), methotrexate (p = 0.046) or any immunosuppressive treatment (p = 0.044) presented lower concentrations of Gal-3 compared to those not receiving such treatments. The presence of telangiectasia and the type of SSc maintained their statistical association with Gal-3 (β 0.25; p = 0.022 and β 0.26; p = 0.017, respectively) in multiple linear regression models. In conclusion, serum levels of Gal-3 are associated with clinical manifestations of SSc. Among them, the presence of telangiectasias could be explained by the central role of this lectin in the vascularization programs.
Collapse
Affiliation(s)
- Victoria Sundblad
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ramiro A Gomez
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Juan C Stupirski
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Pablo F Hockl
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Maria S Pino
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Hugo Laborde
- División Reumatología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|