1
|
Optimized Camera-Based Patient Positioning in CT: Impact on Radiation Exposure. Invest Radiol 2023; 58:126-130. [PMID: 35926075 DOI: 10.1097/rli.0000000000000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate whether a 3-dimensional (3D) camera can outperform highly trained technicians in precision of patient positioning and whether this transforms into a reduction in patient exposure. MATERIALS AND METHODS In a single-center study, 3118 patients underwent computer tomography (CT) scans of the chest and/or abdomen on a latest generation single-source CT scanner supported with an automated patient positioning system by 3D camera. One thousand five hundred fifty-seven patients were positioned laser-guided by a highly trained radiographer (camera off) and 1561 patients with 3D camera (camera on) guidance. Radiation parameters such as effective dose, organ doses, CT dose index, and dose length product were analyzed and compared. Isocenter accuracy and table height were evaluated between the 2 groups. RESULTS Isocenter positioning was significantly improved with the 3D camera ( P < 0.001) as compared with visual laser-guided positioning. Absolute table height differed significantly ( P < 0.001), being higher with camera positioning (165.6 ± 16.2 mm) as compared with laser-guided positioning (170.0 ± 20.4 mm). Radiation exposure decreased using the 3D camera as indicated by dose length product (321.1 ± 266.6 mGy·cm; camera off: 342.0 ± 280.7 mGy·cm; P = 0.033), effective dose (3.3 ± 2.7 mSv; camera off: 3.5 ± 2.9; P = 0.053), and CT dose index (6.4 ± 4.3 mGy; camera off: 6.8 ± 4.6 mGy; P = 0.011). Exposure of radiation-sensitive organs such as colon ( P = 0.015) and red bone marrow ( P = 0.049) were also lower using the camera. CONCLUSIONS The introduction of a 3D camera improves patient positioning in the isocenter of the scanner, which results in a lower and also better balanced dose reduction for the patients.
Collapse
|
2
|
Al-Hayek Y, Zheng X, Hayre C, Spuur K. The influence of patient positioning on radiation dose in CT imaging: A narrative review. J Med Imaging Radiat Sci 2022; 53:737-747. [PMID: 36280573 DOI: 10.1016/j.jmir.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Although it is fundamental for optimal scanner operation, it is generally accepted that accurate patient centring cannot always be achieved. This review aimed to examine the reported knowledge of the negative impact of patient positioning on radiation dose and image quality during CT imaging. Furthermore, the study evaluated the current optimisation tools and techniques used to improve patient positioning relative to the gantry iso-center. METHODOLOGY A comprehensive search through the databases PubMed, Ovid, and Google Scholar was performed. Keywords included patient off-centring, patient positioning, localiser radiograph orientation, radiation dose, and automatic patient positioning (including synonyms). The search was limited to full-text articles that were written in English. After initial title and abstract screening, a total of 52 articles were identified to address the aim of the review. No limitations were imposed on the year of publication. RESULTS Vertical off-centring was reported in up to 95% of patients undergoing chest and abdominal CT examinations, showing a significant influence on radiation dose. Depending on the scanner model and vendor, localiser orientation, bowtie filter used, and patient size, radiation dose varied from a decrease of 36% to an increase of 91%. A significant dose reduction was demonstrated when utilising an AP localiser, aligning with the trend for radiographers to off-center patients below the gantry iso-centre. Utilizing a 3D camera for body contour detection allowed for more accurate patient positioning and promoted further dose reduction. CONCLUSION Patient positioning has shown significant effects on radiation dose and image quality in CT. Developing a good understanding of the key factors influencing patient dose (off-centring direction, localiser orientation, patient size and bowtie filter selection) is critical in optimising CT scanning practices. Utilising a 3D camera for body contour detection is strongly recommended to improve patient positioning accuracy, image quality and to minimise patient dose.
Collapse
Affiliation(s)
- Yazan Al-Hayek
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia; Department of Medical Imaging, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Xiaoming Zheng
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| | - Christopher Hayre
- Department of Medical Imaging, College of Medicine and Health, University of Exeter, Devon, UK.
| | - Kelly Spuur
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
3
|
Al-Hayek Y, Spuur K, Davidson R, Hayre C, Zheng X. The Impacts of Vertical Off-Centring, Localiser Direction, Phantom Positioning and Tube Voltage on CT Number Accuracy: An Experimental Study. J Imaging 2022; 8:jimaging8070175. [PMID: 35877619 PMCID: PMC9316438 DOI: 10.3390/jimaging8070175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background: This study investigates the effects of vertical off-centring, localiser direction, tube voltage, and phantom positioning (supine and prone) on computed tomography (CT) numbers and radiation dose. Methods: An anthropomorphic phantom was scanned using a Discovery CT750 HD—128 slice (GE Healthcare) scanner at different tube voltages (80, 120, and 140 kVp). Images employing 0° and 180° localisers were acquired in supine and prone positions for each vertical off-centring (±100, ±60, and ±30 mm from the iso-centre). CT numbers and displayed volume CT dose index (CTDIvol) were recorded. The relationship between dose variation and CT number was investigated. Results: The maximum changes in CT number between the two phantom positions as a function of vertical-off-centring were for the upper thorax 34 HU (0° localiser, 120 kVp), mid thorax 43 HU (180° localiser, 80 kVp), and for the abdominal section 31 HU (0° localiser, 80 kVp) in the prone position. A strong positive correlation was reported between the variation in dose and CT number (r = 0.969, p < 0.001); 95% CI (0.93, 0.99). Conclusions: Patient positioning demands an approach with a high degree of accuracy, especially in cases where clinical decisions depend on CT number accuracy for tissue lesion characterisation.
Collapse
Affiliation(s)
- Yazan Al-Hayek
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (K.S.); (C.H.); (X.Z.)
- Department of Medical Imaging, Faculty of Applied Health Sciences, The Hashemite University, Zarqa 13133, Jordan
- Correspondence:
| | - Kelly Spuur
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (K.S.); (C.H.); (X.Z.)
| | - Rob Davidson
- School of Health Sciences, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia;
| | - Christopher Hayre
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (K.S.); (C.H.); (X.Z.)
| | - Xiaoming Zheng
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (K.S.); (C.H.); (X.Z.)
| |
Collapse
|
4
|
Al‐Hayek Y, Zheng X, Davidson R, Hayre C, Al‐Mousa D, Finlay C, Spuur K. 0° vs. 180° CT localiser: The effect of vertical off-centring, phantom positioning and tube voltage on dose optimisation in multidetector computed tomography. J Med Radiat Sci 2022; 69:5-12. [PMID: 34402591 PMCID: PMC8892417 DOI: 10.1002/jmrs.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Patient positioning is an essential consideration for the optimisation of radiation dose during CT examinations. The study objectives seek to explore the effects of vertical off-centring, localiser direction (0° and 180°), and phantom positioning (supine and prone) on radiation dose, using three different tube voltages in multidetector computed tomography (MDCT) imaging. METHODS The trunk of a PBU-60 anthropomorphic phantom was imaged using a Discovery CT750 HD - 128 slice (GE Healthcare). Images employing 0° and 180° localisers were acquired in supine and prone orientation for each combination of vertical off-centring (±100, ±60 and ±30 mm) and different tube voltages (80, 120 and 140 kVp), using the system's automatic tube current modulation (ATCM) function. The displayed volume CT dose index (CTDIvol ) and dose length product (DLP) were recorded. RESULTS With incremental table off-centring of ±100 mm, the dose at 120 kVp in the supine position ranged from 63% to 196% (0° localiser) and from 66% to 191% (180° localiser) as compared to iso-centre. While in the prone position, the dose ranged from 62% to 195% (0° localiser); and 62% to 193% (180° localiser), with a notable dose increase at higher tube voltages. Dose variation and vertical off-centring showed a significant relationship for both 0° and 180° localisers (r = 0.94 and 0.96, respectively, P < 0.001). The CTDIvol variation between supine and prone phantom positions at ±100 mm off-centring was 0.22 mGy (2.9%), and 0.19 mGy (2.3%) when the 0° and 180 ° localisers were utilised, respectively. CONCLUSIONS Phantom off-centring and localiser direction evidenced large dose variation. It is recommended that the 0° localiser is employed during CT examinations, in order to minimise the potential additional radiation dose which may result from off-centring and the use of lower tube voltages where clinically appropriate.
Collapse
Affiliation(s)
- Yazan Al‐Hayek
- Medical Radiation ScienceSchool of Dentistry and Health SciencesFaculty of Science and HealthCharles Sturt UniversityWagga WaggaNew South WalesAustralia
- Medical ImagingFaculty of Applied Health SciencesThe Hashemite UniversityZarqaJordan
| | - Xiaoming Zheng
- Medical Radiation ScienceSchool of Dentistry and Health SciencesFaculty of Science and HealthCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | - Rob Davidson
- Medical Radiation ScienceSchool of Health SciencesFaculty of HealthUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Christopher Hayre
- Medical Radiation ScienceSchool of Dentistry and Health SciencesFaculty of Science and HealthCharles Sturt UniversityWagga WaggaNew South WalesAustralia
- School of Health and Sport SciencesUniversity of SuffolkIpswichSuffolkUK
| | - Dana Al‐Mousa
- Allied Medical SciencesFaculty of Applied Medical SciencesJordan University of Science and TechnologyIrbidJordan
| | | | - Kelly Spuur
- Medical Radiation ScienceSchool of Dentistry and Health SciencesFaculty of Science and HealthCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| |
Collapse
|
5
|
Liu ZC, Zhao S, Ma ZP, Zhang TL, Zhao YX. Comparing feasibility of different tube voltages and different concentrations of contrast medium in coronary CT angiography of overweight patients. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:1261-1272. [PMID: 36214032 DOI: 10.3233/xst-221263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To compare image quality, radiation dose, and iodine intake of coronary computed tomography angiography (CCTA) acquired by wide-detector using different tube voltages and different concentrations of contrast medium (CM) for overweight patients. MATERIALS AND METHODS A total of 150 overweight patients (body mass index≥25 kg/m2) who underwent CCTA are enrolled and divided into three groups according to scan protocols namely, group A (120 kVp, 370 mgI/ml CM); group B (100 kVp, 350 mgI/ml CM); and group C (80 kVp, 320 mgI/ml CM). The CT values, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and figure-of-merit (FOM) of all images are calculated. Images are subjectively assessed using a 5-point scale. In addition, the CT dose index volume (CTDIvol) and dose length product (DLP) of each patient are recorded. The effective radiation dose (ED) is also calculated. Above data are then statistically analyzed. RESULTS The mean CT values, SNR, CNR, and subjective image quality of group A are significantly lower than those of groups B and C (P < 0.001), but there is no significant difference between groups B and C (P > 0.05). FOMs show a significantly increase trend from group A to C (P < 0.001). The ED values and total iodine intake in groups B and C are 30.34% and 68.53% and 10.22% and 16.85% lower than those in group A, respectively (P < 0.001). CONCLUSION The lower tube voltage and lower concentration of CM based on wide-detector allows for significant reduction in iodine load and radiation dose in CCTA for overweight patients comparing to routine scan protocols. It also enhances signal intensity of CCTA and maintains image quality.
Collapse
Affiliation(s)
- Zhi-Chao Liu
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding City, China
| | - Sai Zhao
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding City, China
| | - Ze-Peng Ma
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding City, China
| | - Tian-Le Zhang
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding City, China
| | - Yong-Xia Zhao
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding City, China
| |
Collapse
|
6
|
Lurz M, Gazis A, Hanschke S, Weimann A, Schäfer AO. Value of high-field magnetic resonance imaging for diagnosis and classification of acute colonic diverticulitis. Int J Colorectal Dis 2022; 37:201-207. [PMID: 34633499 DOI: 10.1007/s00384-021-04045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Due to limited and outdated literature, the role of magnetic resonance imaging (MRI) in the diagnostic work-up of acute colonic diverticulitis (ACD) is still under debate. The purpose of this study was to compare the performance of modern high-field MRI and multidetector computed tomography (MDCT) in the diagnosis and classification of ACD. METHODS In our prospective study 24 emergency patients with the clinical diagnosis of ACD received MDCT and high-field MRI. Imaging features of ACD were assessed and categorized according to the classification of diverticular disease (CDD) by three independent readers. Results were matched with the final clinical report. RESULTS MRI with a specialized examination protocol clearly depicted all relevant findings of ACD. Statistical analysis resulted in an almost perfect strength of agreement between CT and MRI across all readers for the final CDD category (κ = 0.94) and the stage-related image features (κ = 0.98). Moderate agreement was seen for the detection of micro-abscesses (κ = 0.78), with a slight advantage for MRI. CONCLUSION Modern high-field MRI is fully comparable to MDCT in the assessment of ACD and has the potential to serve as a first-line imaging tool.
Collapse
Affiliation(s)
- Markus Lurz
- Department of Radiology, Klinikum St. Georg Leipzig, Leipzig, Germany.
| | - Angelos Gazis
- Department of Radiology, Klinikum St. Georg Leipzig, Leipzig, Germany
| | - Stefanie Hanschke
- Department of Emergency Medicine, Klinikum St. Georg Leipzig, Leipzig, Germany
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, Klinikum St. Georg Leipzig, Leipzig, Germany
| | | |
Collapse
|
7
|
Individualized Scan Protocols in Abdominal Computed Tomography: Radiation Versus Contrast Media Dose Optimization. Invest Radiol 2021; 57:353-358. [PMID: 34935651 DOI: 10.1097/rli.0000000000000844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In contrast-enhanced abdominal computed tomography (CT), radiation and contrast media (CM) injection protocols are closely linked to each other, and therefore a combination is the basis for achieving optimal image quality. However, most studies focus on optimizing one or the other parameter separately. PURPOSE Reducing radiation dose may be most important for a young patient or a population in need of repetitive scanning, whereas CM reduction might be key in a population with insufficient renal function. The recently introduced technical solution, in the form of an automated tube voltage selection (ATVS) slider, might be helpful in this respect. The aim of the current study was to systematically evaluate feasibility of optimizing either radiation or CM dose in abdominal imaging compared with a combined approach. METHODS Six Göttingen minipigs (mean weight, 38.9 ± 4.8 kg) were scanned on a third-generation dual-source CT. Automated tube voltage selection and automated tube current modulation techniques were used, with quality reference values of 120 kVref and 210 mAsref. Automated tube voltage selection was set at 90 kV semimode. Three different abdominal scan and CM protocols were compared intraindividually: (1) the standard "combined" protocol, with the ATVS slider position set at 7 and a body weight-adapted CM injection protocol of 350 mg I/kg body weight, iodine delivery rate (IDR) of 1.1 g I/s; (2) the CM dose-saving protocol, with the ATVS slider set at 3 and CM dose lowered to 294 mg I/kg, resulting in a lower IDR of 0.9 g I/s; (3) the radiation dose-saving protocol, with the ATVS slider position set at 11 and a CM dose of 441 mg I/kg and an IDR 1.3 g I/s, respectively. Scans were performed with each protocol in arterial, portal venous, and delayed phase. Objective image quality was evaluated by measuring the attenuation in Hounsfield units, signal-to-noise ratio, and contrast-to-noise ratio of the liver parenchyma. The overall image quality, contrast quality, noise, and lesion detection capability were rated on a 5-point Likert scale (1 = excellent, 5 = very poor). Protocols were compared for objective image quality parameters using 1-way analysis of variance and for subjective image quality parameters using Friedman test. RESULTS The mean radiation doses were 5.2 ± 1.7 mGy for the standard protocol, 7.1 ± 2.0 mGy for the CM dose-saving protocol, and 3.8 ± 0.4 mGy for the radiation dose-saving protocol. The mean total iodine load in these groups was 13.7 ± 1.7, 11.4 ± 1.4, and 17.2 ± 2.1 g, respectively. No significant differences in subjective overall image or contrast quality were found. Signal-to-noise ratio and contrast-to-noise ratio were not significantly different between protocols in any scan phase. Significantly more noise was seen when using the radiation dose-saving protocol (P < 0.01). In portal venous and delayed phases, the mean attenuation of the liver parenchyma significantly differed between protocols (P < 0.001). Lesion detection was significantly better in portal venous phase using the CM dose-saving protocol compared with the radiation dose-saving protocol (P = 0.037). CONCLUSIONS In this experimental setup, optimizing either radiation (-26%) or CM dose (-16%) is feasible in abdominal CT imaging. Individualizing either radiation or CM dose leads to comparable objective and subjective image quality. Personalized abdominal CT examination protocols can thus be tailored to individual risk assessment and might offer additional degrees of freedom.
Collapse
|
8
|
Parakh A, Cao J, Pierce TT, Blake MA, Savage CA, Kambadakone AR. Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Eur Radiol 2021; 31:8342-8353. [PMID: 33893535 DOI: 10.1007/s00330-021-07952-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the image quality and perception of a sinogram-based deep learning image reconstruction (DLIR) algorithm for single-energy abdominal CT compared to standard-of-care strength of ASIR-V. METHODS In this retrospective study, 50 patients (62% F; 56.74 ± 17.05 years) underwent portal venous phase. Four reconstructions (ASIR-V at 40%, and DLIR at three strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H)) were generated. Qualitative and quantitative image quality analysis was performed on the 200 image datasets. Qualitative scores were obtained for image noise, contrast, small structure visibility, sharpness, and artifact by three blinded radiologists on a 5-point scale (1, excellent; 5, very poor). Radiologists also indicated image preference on a 3-point scale (1, most preferred; 3, least preferred). Quantitative assessment was performed by measuring image noise and contrast-to-noise ratio (CNR). RESULTS DLIR had better image quality scores compared to ASIR-V. Scores on DLIR-H for noise (1.40 ± 0.53), contrast (1.41 ± 0.55), small structure visibility (1.51 ± 0.61), and sharpness (1.60 ± 0.54) were the best (p < 0.05) followed by DLIR-M (1.85 ± 0.52, 1.66 ± 0.57, 1.69 ± 0.59, 1.68 ± 0.46), DLIR-L (2.29 ± 0.58, 1.96 ± 0.61, 1.90 ± 0.65, 1.86 ± 0.46), and ASIR-V (2.86 ± 0.67, 2.55 ± 0.58, 2.34 ± 0.66, 2.01 ± 0.36). Ratings for artifacts were similar for all reconstructions (p > 0.05). DLIRs did not influence subjective textural perceptions and were preferred over ASIR-V from the beginning. All DLIRs had a higher CNR (26.38-102.30%) and lower noise (20.64-48.77%) than ASIR-V. DLIR-H had the best objective scores. CONCLUSION Sinogram-based deep learning image reconstructions were preferred over iterative reconstruction subjectively and objectively due to improved image quality and lower noise, even in large patients. Use in clinical routine may allow for radiation dose reduction. KEY POINTS • Deep learning image reconstructions (DLIRs) have a higher contrast-to-noise ratio compared to medium-strength hybrid iterative reconstruction techniques. • DLIR may be advantageous in patients with large body habitus due to a lower image noise. • DLIR can enable further optimization of radiation doses used in abdominal CT.
Collapse
Affiliation(s)
- Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Theodore T Pierce
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Michael A Blake
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Cristy A Savage
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA
| | - Avinash R Kambadakone
- Department of Radiology, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Euler A, Taslimi T, Eberhard M, Kobe A, Reeve K, Zimmermann A, Krauss A, Gutjahr R, Schmidt B, Alkadhi H. Computed Tomography Angiography of the Aorta-Optimization of Automatic Tube Voltage Selection Settings to Reduce Radiation Dose or Contrast Medium in a Prospective Randomized Trial. Invest Radiol 2021; 56:283-291. [PMID: 33226202 DOI: 10.1097/rli.0000000000000740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to compare the image quality of low-kV protocols with optimized automatic tube voltage selection (ATVS) settings to reduce either radiation dose or contrast medium (CM) with that of a reference protocol for computed tomography angiography (CTA) of the thoracoabdominal aorta. MATERIALS AND METHODS In this institutional review board-approved, single-center, prospective randomized controlled trial, 126 patients receiving CTA of the aorta were allocated to one of three computed tomography protocols: (A) reference protocol at 120 kVp and standard weight-adapted CM dose; (B) protocol at 90 kVp, reduced radiation and standard CM dose; and (C) protocol at 90 kVp, standard radiation and reduced CM dose. All three protocols were performed on a third-generation dual-source computed tomography scanner using the semimode of the ATVS system. The image-task-dependent optimization settings of the ATVS (slider level) were adjusted to level 11 (high-contrast task) for protocols A and B and level 3 (low-contrast task) for protocol C. Radiation dose parameters were assessed. The contrast-to-noise ratios (CNRs) of protocols B and C were tested for noninferiority compared with A. Subjective image quality was assessed using a 5-point Likert scale. RESULTS Size-specific dose estimate was 34.3% lower for protocol B compared with A (P < 0.0001). Contrast medium was 20.2% lower for protocol C compared with A (P < 0.0001). Mean CNR in B and C was noninferior to protocol A (CNR of 30.2 ± 7, 33.4 ± 6.7, and 30.5 ± 8.9 for protocols A, B, and C, respectively). There was no significant difference in overall subjective image quality among protocols (4.09 ± 0.21, 4.03 ± 0.19, and 4.08 ± 0.17 for protocols A, B, and C, respectively; P = 0.4). CONCLUSIONS The slider settings of an ATVS system can be adjusted to optimize either radiation dose or CM at noninferior image quality in low-kV CTA of the aorta. This optimization could be used to extend future ATVS algorithms to take clinical risk factors like kidney function of individual patients into account.
Collapse
Affiliation(s)
- André Euler
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tilo Taslimi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adrian Kobe
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kelly Reeve
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Alexander Zimmermann
- Department of Vascular Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Appel E, Boos J, Fang J, Zhang D, Wilcox C, Camacho A, Dommaraju S, Brook A, Brook OR. Minimizing Radiation Dose Outliers Through Systematic Analysis, Computed Tomography Technologist Education, and Standardized System Solutions. J Comput Assist Tomogr 2021; 45:78-83. [PMID: 32168081 DOI: 10.1097/rct.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aims of the study were to systematically analyze causes for radiation dose outliers in emergency department noncontrast head computed tomographies (CTs), to develop and implement standardized system solutions, and audit program success for an extended period of time. METHODS This study was performed in a large, tertiary academic center between January 2015 and September 2017. Four phases of radiation dose data collection with and without prior interventions were performed. Outliers from 5 categories were evaluated for appropriateness in consensus by 2 radiologists and a senior CT technologist. RESULTS A total of 275 ± 15 CTs per period were included. Fifty-seven inappropriate scanning parameters were found in 24 (9%) of 254 CTs during the first analysis, 27 in 21 (7%) of 290 CTs during the second, 11 in 10 (4%) of 276 during the third assessment (P = 0.006). After a year without additional intervention, the number remained stable (14 in 11/281 CTs, 4%). CONCLUSIONS Combining a dose reporting system, individual case analysis, staff education, and implementation of systemic solutions lead to sustained radiation exposure improvement.
Collapse
Affiliation(s)
- Elisabeth Appel
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Johannes Boos
- Institute of clinical and interventional Radiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jieming Fang
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Da Zhang
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Carol Wilcox
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Andrés Camacho
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sujithraj Dommaraju
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Alexander Brook
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Olga R Brook
- From the Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
11
|
Establishment of Submillisievert Abdominal CT Protocols With an In Vivo Swine Model and an Anthropomorphic Phantom. AJR Am J Roentgenol 2020; 215:685-694. [DOI: 10.2214/ajr.19.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Horinouchi H, Sofue K, Nishii T, Maruyama K, Sasaki K, Gentsu T, Ueshima E, Okada T, Yamaguchi M, Sugimoto K, Murakami T. CT angiography with 15 mL contrast material injection on time-resolved imaging for endovascular abdominal aortic aneurysm repair. Eur J Radiol 2020; 126:108861. [PMID: 32179423 DOI: 10.1016/j.ejrad.2020.108861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE To assess the utility of whole-aorta CT angiography (CTA) with 15 mL contrast material (CM) on time-resolved imaging for endovascular abdominal aortic repair (EVAR). METHODS Twenty-six patients with a high-risk of post-contrast acute kidney injury (PC-AKI) underwent CTA with 15 mL CM using temporal maximum intensity projection (tMIP-CTA) generated from time-resolved imaging. The aortoiliac CT values were measured. Two observers measured the arterial diameters in unenhanced CT and tMIP-CTA images, and image quality was evaluated on a 5-point scale. The presence of the accessory renal artery, inferior mesenteric artery (IMA) occlusion, and instructions for use (IFU) of EVAR were evaluated. RESULTS CT examinations were successfully performed, and no patients developed PC-AKI. The mean CT values of the whole aorta were 267.5 ± 51.4 HU, which gradually decreased according to the distal levels of the aorta. Bland-Altman analysis revealed excellent agreement for the external arterial diameter measurements between unenhanced CT and tMIP-CTA. Excellent interobserver agreement was achieved for the measurements of the external (ICCs, 0.910-0.992) and internal arterial diameters (ICCs, 0.895-0.993). Excellent or good overall image quality was achieved in 24 (92 %) patients. The presence of the accessory renal artery, IMA occlusion and the assessment of IFU were in 100 % agreement. Multivariate analysis revealed aortic volume as the most significant independent factor associated with strong aortic enhancement (p = 0.004). CONCLUSIONS Whole-aorta tMIP-CTA on time-resolved imaging is useful for maintaining contrast enhancement and image quality for EVAR planning, and can substantially reduce the amount of CM.
Collapse
Affiliation(s)
- Hiroki Horinouchi
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Center for Endovascular Center, Kobe University Hospital, Kobe, Japan.
| | - Tatsuya Nishii
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Koji Maruyama
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Sasaki
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Gentsu
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Center for Endovascular Center, Kobe University Hospital, Kobe, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Okada
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Yamaguchi
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Sugimoto
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Center for Endovascular Center, Kobe University Hospital, Kobe, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Rajiah P, Ciancibello L, Novak R, Sposato J, Landeras L, Gilkeson R. Ultra-low dose contrast CT pulmonary angiography in oncology patients using a high-pitch helical dual-source technology. ACTA ACUST UNITED AC 2020; 25:195-203. [PMID: 31063136 DOI: 10.5152/dir.2019.17498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We aimed to determine if the image quality and vascular enhancement are preserved in computed tomography pulmonary angiography (CTPA) studies performed with ultra-low contrast and optimized radiation dose using high-pitch helical mode of a second generation dual source scanner. METHODS We retrospectively evaluated oncology patients who had CTPA on a 128-slice dual-source scanner, with a high-pitch helical mode (3.0), following injection of 30 mL of Ioversal at 4 mL/s with body mass index (BMI) dependent tube potential (80-120 kVp) and current (130-150 mAs). Attenuation, noise, and signal-to-noise ratio (SNR) were measured in multiple pulmonary arteries. Three independent readers graded the images on a 5-point Likert scale for central vascular enhancement (CVE), peripheral vascular enhancement (PVE), and overall quality. RESULTS There were 50 males and 101 females in our study. BMI ranged from 13 to 38 kg/m2 (22.8±4.4 kg/m2). Pulmonary embolism was present in 29 patients (18.9%). Contrast enhancement and SNR were excellent in all the pulmonary arteries (395.3±131.1 and 18.3±5.7, respectively). Image quality was considered excellent by all the readers, with average reader scores near the highest possible score of 5.0 (CVE, 4.83±0.48; PVE, 4.68±0.65; noise/quality, 4.78±0.47). The average radiation dose length product (DLP) was 161±60 mGy.cm. CONCLUSION Using a helical high-pitch acquisition technique, CTPA images of excellent diagnostic quality, including visualization of peripheral segmental/sub-segmental branches can be obtained using an ultra-low dose of iodinated contrast and low radiation dose.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA;Department of Radiology, Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Leslie Ciancibello
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ronald Novak
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA;Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA
| | - Jennifer Sposato
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Luis Landeras
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA;Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Robert Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
14
|
|
15
|
Eller A, Wiesmüller M, Wüst W, Heiss R, Kopp M, Saake M, Brand M, Uder M, May MM. Carotid CTA at the Lowest Tube Voltage (70 kV) in Comparison with Automated Tube Voltage Adaption. AJNR Am J Neuroradiol 2019; 40:1374-1382. [PMID: 31296525 DOI: 10.3174/ajnr.a6108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/26/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE CTA is the imaging modality of choice in many institutions for the evaluation of the supraaortic vessels, but radiation exposure remains a matter of concern. Our aim was to evaluate a 70-kV protocol for CT angiography of the carotid arteries with respect to image quality and radiation exposure compared with automated tube voltage adaption. MATERIALS AND METHODS A total of 90 consecutive patients were included in this prospective study and randomized to the study group (n = 45, 70 kV) or control group (n = 45, automated tube voltage adaptation). Volume CT dose indices and dose-length products were recorded in the examination protocol. Image quality was assessed as arterial vessel contrast, signal-to-noise ratio, contrast-to-noise ratio, and contrast-to-noise ratio in reference to the radiation dose. Subjective overall image-quality analysis, image-artifact analysis, and diagnostic evaluation were performed by 2 observers by using a 4-point Likert scale. RESULTS Radiation exposure was significantly lower in the study group (volume CT dose index reduced by 22%, dose-length product reduction by 20%; each P < .001). Contrast (P = .15), SNR (P = .4), and contrast-to-noise ratio (P = .5) did not show significant differences between the groups. The contrast-to-noise ratio in reference to the radiation dose was not significantly increased using the study protocol (P = .2). Subjective image quality and visualization of pathologic findings did not differ significantly between the groups. CONCLUSIONS Carotid CTA using the lowest available voltage (70 kV) is feasible at very-low-dose levels, while overall image quality is comparable with protocols using automated tube voltage selection.
Collapse
Affiliation(s)
- A Eller
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - M Wiesmüller
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - W Wüst
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - R Heiss
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - M Kopp
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - M Saake
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - M Brand
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
| | - M Uder
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
- Imaging Science Institute (M.U., M.M.M.), Erlangen, Germany
| | - M M May
- From the Department of Radiology (A.E., M.W., W.W., R.H., M.K., M.S., M.B., M.U., M.M.M.), University Hospital Erlangen, Erlangen, Germany
- Imaging Science Institute (M.U., M.M.M.), Erlangen, Germany
| |
Collapse
|
16
|
Precise and Automatic Patient Positioning in Computed Tomography: Avatar Modeling of the Patient Surface Using a 3-Dimensional Camera. Invest Radiol 2019; 53:641-646. [PMID: 29762259 DOI: 10.1097/rli.0000000000000482] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the accuracy of a 3-dimensional (3D) camera algorithm for automatic and individualized patient positioning based on body surface detection and to compare the results of the 3D camera with manual positioning performed by technologists in routinely obtained chest and abdomen computed tomography (CT) examinations. MATERIALS AND METHODS This study included data of 120 patients undergoing clinically indicated chest (n = 68) and abdomen (n = 52) CT. Fifty-two of the patients were scanned with CT using a table height manually selected by technologists; 68 patients were automatically positioned with the 3D camera, which is based on patient-specific body surface and contour detection. The ground truth table height (TGT) was defined as the table height that aligns the axial center of the patient's body region in the CT scanner isocenter. Off-centering was defined as the difference between the ground truth table height (TGT) and the actual table position used in all CT examinations. The t test was performed to determine significant differences in the vertical offset between automatic and manual positioning. The χ test was used to check whether there was a relationship between patient size and the magnitude of off-centering. RESULTS We found a significant improvement in patient centering (offset 5 ± 3 mm) when using the automatic positioning algorithm with the 3D camera compared with manual positioning (offset 19 ± 10 mm) performed by technologists (P < 0.005). Automatic patient positioning based on the 3D camera reduced the average offset in vertical table position from 19 mm to 7 mm for chest and from 18 mm to 4 mm for abdomen CT. The absolute maximal offset was 39 mm and 43 mm for chest and abdomen CT, respectively, when patients were positioned manually, whereas with automatic positioning using the 3D camera the offset never exceeded 15 mm. In chest CT performed with manual patient positioning, we found a significant correlation between vertical offset greater than 20 mm and patient size (body mass index, >26 kg/m, P < 0.001). In contrast, no such relationship was found for abdomen CT (P = 0.38). CONCLUSIONS Automatic individualized patient positioning using a 3D camera allows for accurate patient centering as compared with manual positioning, which improves radiation dose utilization.
Collapse
|
17
|
Xu X, Sui X, Zhong W, Xu Y, Wang Z, Jiang J, Ge Y, Song L, Du Q, Wang X, Song W, Jin Z. Clinical utility of quantitative dual-energy CT iodine maps and CT morphological features in distinguishing small-cell from non-small-cell lung cancer. Clin Radiol 2019; 74:268-277. [PMID: 30691731 DOI: 10.1016/j.crad.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
AIM To evaluate the clinical usefulness of quantitative dual-energy (DE) computed tomography (CT) iodine enhancement metrics combined with morphological CT features in distinguishing small-cell lung cancer (SCLC) from non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS One hundred and six untreated lung cancer patients who underwent DECT before biopsy or surgery were prospectively enrolled. Twenty-seven routine CT descriptors, including tumour location, size, shape, margin, enhancement heterogeneity, and internal and surrounding structures, and associated findings were assessed and DECT parameters were measured in all patients. Multiple logistic regression analyses were applied to identify independent predictors of SCLC. The area under the receiver operating characteristic curve was compared between CT features combined with DECT metrics and CT features alone for distinguishing SCLC from NSCLC. RESULTS Histology revealed NSCLC in 80 and SCLC in 26 patients. In univariate analysis, 12 morphological CT features and two DECT metrics differed significantly between NSCLC and SCLC. When DECT parameters were combined with CT features for multivariate analysis, the independent predictors of SCLC were large tumour size, central location, confluent mediastinal lymphadenopathy, homogeneous enhancement, absence of coarse spiculation, and lower iodine density and iodine ratio (all p<0.05). The area under the receiver operating characteristic curve was improved from 0.908 to 0.981 after adding DECT metrics compared with CT features alone (p=0.007). CONCLUSION The combination of DECT measures and CT morphological features can be used to distinguish SCLC from NSCLC, with higher diagnostic performance compared with CT morphological features alone.
Collapse
Affiliation(s)
- X Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - X Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - W Zhong
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Xu
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Z Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - J Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Science, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Y Ge
- Siemens China, Beijing, China
| | - L Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Q Du
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - X Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - W Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Z Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Best Protocol for Combined Contrast-Enhanced Thoracic and Abdominal CT for Lung Cancer: A Single-Institution Randomized Crossover Clinical Trial. AJR Am J Roentgenol 2018; 210:1226-1234. [DOI: 10.2214/ajr.17.19185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Eller A, Wuest W, Saake M, Ellmann S, Kaemmerer N, Hammon M, Janka R, Uder M, May MS. Extent of simultaneous radiation dose and iodine reduction at stable image quality in computed tomography of the chest: A systematic approach using automated tube voltage adaption and iterative reconstructions. Medicine (Baltimore) 2018; 97:e0388. [PMID: 29642199 PMCID: PMC5908636 DOI: 10.1097/md.0000000000010388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aim of this study was to systematically combine tube voltage adaptation and iterative reconstructions for reduction of iodine and radiation dose. METHODS Settings for the study protocol were evaluated in ex-ante trials to provide image quality that is comparable to a reference protocol at 120 kV with tube current modulation. Consecutive patients were randomized to undergo computed tomography (CT) of the chest using the study protocol (n = 62) or reference protocol (n = 50). Objective and subjective image quality was assessed and compared. RESULTS Tube voltage was decreased to 100 kV in 47 patients and to 80 kV in 15 patients in the study group. The iodine dosage (16.1 vs 10.5 g) and the effective radiation dose (3.6 vs 2.5 mSv) were significantly decreased in the study group (both P < .001). Contrast-to-noise ratio was comparable in the pulmonary trunk and increased in the aorta (P < .01). Subjective image quality was comparable without statistically significance. CONCLUSIONS Simultaneous reductions in iodine dosage and radiation dose by one-third are feasible for CT of the chest.
Collapse
Affiliation(s)
- Achim Eller
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
| | - Wolfgang Wuest
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
- Imaging Science Institute, Ulmenweg 18, Erlangen, Germany
| | - Marc Saake
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
| | - Stephan Ellmann
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
| | - Nadine Kaemmerer
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
| | - Matthias Hammon
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
- Imaging Science Institute, Ulmenweg 18, Erlangen, Germany
| | - Matthias Stefan May
- Department of Radiology, University Hospital Erlangen, Maximiliansplatz 3
- Imaging Science Institute, Ulmenweg 18, Erlangen, Germany
| |
Collapse
|
20
|
Computed Tomography of the Head and Neck Region for Tumor Staging—Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions. Invest Radiol 2017; 52:522-528. [DOI: 10.1097/rli.0000000000000377] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Tailored Duration of Contrast Material Injection in High-Pitch Computed Tomographic Aortography With a Double-Level Test Bolus Method. Invest Radiol 2017; 52:274-280. [DOI: 10.1097/rli.0000000000000340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
van der Heyden B, Öllers M, Ritter A, Verhaegen F, van Elmpt W. Clinical evaluation of a novel CT image reconstruction algorithm for direct dose calculations. Phys Imaging Radiat Oncol 2017. [DOI: 10.1016/j.phro.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Optimizing Contrast Media Injection Protocols in Computed Tomography Angiography at Different Tube Voltages. J Comput Assist Tomogr 2017; 41:804-810. [DOI: 10.1097/rct.0000000000000613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Mangold S, De Cecco CN, Schoepf UJ, Kuhlman TS, Varga-Szemes A, Caruso D, Duguay TM, Tesche C, Vogl TJ, Nikolaou K, Steinberg DH, Wichmann JL. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure. Eur J Radiol 2017; 86:276-283. [DOI: 10.1016/j.ejrad.2016.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/19/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
|
25
|
Computed Tomography Angiography of Coronary Artery Bypass Grafts: Low Contrast Media Volume Protocols Adapted to Tube Voltage. Invest Radiol 2016; 51:241-8. [PMID: 26646307 DOI: 10.1097/rli.0000000000000233] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the potential of contrast media (CM) reduction in computed tomography angiography (CTA) of coronary artery bypass grafts (CABGs) when adapting CM volume to automatically selected tube voltages. MATERIAL AND METHODS Sixty consecutive patients (mean age, 71 ± 14.5 years) with a total of 176 CABGs (692 bypass segments) underwent contrast-enhanced prospectively electrocardiography-gated high-pitch CTA with automated, attenuation-based tube voltage selection (100 ref. peak kilovoltage [kVp], 200 ref. mAs, tube voltages from 70-150 kVp in 10-kVp steps) using a third-generation 192-slice dual-source computed tomography scanner. Volume and flow of CM (370 mg/mL iodine) was adapted according to the tube voltages using iodine attenuation-curves derived from a foregoing phantom study. In patients, CM volumes ranged from 80 mL (flow rate, 7 mL/s) at 120 kVp to 48 mL (flow rate, 4.2 mL/s) at 80 kVp. Two independent, blinded readers evaluated subjective image quality of the proximal anastomosis, bypass graft, distal anastomosis, and postanastomotic native coronary artery using a 3-point Likert scale. Objective image quality (attenuation of graft and noise) was determined and contrast-to-noise ratio (CNR) was calculated. Volume computed tomography dose index and dose-length product of each CTA examination were noted. Cohen κ was used to define interreader agreement of subjective image quality. Regression analysis was used to determine relationships between tube voltage and vascular attenuation, image noise, and CNR. RESULTS Using attenuation-based tube voltage selection, 5 patients (8%) were scanned at 80 kVp, 22 (37%) at 90 kVp, 11 (18%) at 100 kVp, 10 (17%) at 110 kVp, and 12 (20%) at 120 kVp. Agreement in subjective image quality between readers was good (κ = 0.678). Diagnostic image quality was achieved in 679 of 692 (98%) bypass segments in 169 of 176 bypass grafts (96%). Thirteen of 692 bypass segments (2%) in 7 of 176 bypass grafts (4%) were rated as nondiagnostic because of severe artifacts caused by motion or beam hardening (2 proximal anastomoses of sequential bypasses, 3 graft bodies, 5 distal anastomoses, and 3 postanastomotic coronary artery segments). Regression analysis revealed no significant relationship between the automatically selected tube voltages and objective image quality parameters (bypass graft attenuation: P = 0.315; noise: P = 0.433; and CNR: P = 0.168), indicating homogenous attenuation, noise, and CNR across tube voltage levels. Mean volume computed tomography dose index was 4.0 ± 0.9 mGy, and mean dose length product was 135.0 ± 29.6 mGy*cm. CONCLUSION Adapting CM protocols to automatically selected tube voltage levels allows for low-volume CM CTA examinations of CABG grafts with diagnostic image quality.
Collapse
|
26
|
Mangold S, Wichmann JL, Schoepf UJ, Caruso D, Tesche C, Steinberg DH, Varga-Szemes A, Stubenrauch AC, Bayer RR, Biancalana M, Nikolaou K, De Cecco CN. Diagnostic accuracy of coronary CT angiography using 3 rd-generation dual-source CT and automated tube voltage selection: Clinical application in a non-obese and obese patient population. Eur Radiol 2016; 27:2298-2308. [PMID: 27682312 DOI: 10.1007/s00330-016-4601-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate diagnostic accuracy of 3rd-generation dual-source CT (DSCT) coronary angiography in obese and non-obese patients. METHODS We retrospectively analyzed 76 patients who underwent coronary CT angiography (CCTA) and invasive coronary angiography. Prospectively ECG-triggered acquisition was performed with automated tube voltage selection (ATVS). Patients were dichotomized based on body mass index in groups A (<30 kg/m2, n = 37) and B (≥30 kg/m2, n = 39) and based on tube voltage in groups C (<120 kV, n = 46) and D (120 kV, n = 30). Coronary arteries were assessed for significant stenoses (≥50 % luminal narrowing) and diagnostic accuracy was calculated. RESULTS Per-patient overall sensitivity, specificity, positive predictive value, negative predictive value (NPV) and accuracy were 96.9 %, 95.5 %, 93.9 %, 97.7 % and 96.1 %, respectively. Sensitivity and NPV were lower in groups B and D compared to groups A and C, but no statistically significant differences were observed (group A vs. B: sensitivity, 100.0 % vs. 93.3 %, p = 0.9493; NPV, 100 % vs. 95.5 %, p = 0.9812; group C vs. D: sensitivity, 100.0 % vs. 92.3 %, p = 0.8462; NPV, 100.0 % vs. 94.1 %, p = 0.8285). CONCLUSION CCTA using 3rd-generation DSCT and (ATVS) provides high diagnostic accuracy in both non-obese and obese patients. KEY POINTS • Coronary CTA provides high diagnostic accuracy in non-obese and obese patients. • Diagnostic accuracy between obese and non-obese patients showed no significant difference. • <120 kV studies were performed in 44 % of obese patients. • Current radiation dose-saving approaches can be applied independent of body habitus.
Collapse
Affiliation(s)
- Stefanie Mangold
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.,Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Julian L Wichmann
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA. .,Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Damiano Caruso
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.,Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Rome, Italy
| | - Christian Tesche
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.,Department of Cardiology, Heart Centre Munich-Bogenhausen, Munich, Germany
| | - Daniel H Steinberg
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA
| | - Andrew C Stubenrauch
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA
| | - Richard R Bayer
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew Biancalana
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Carlo N De Cecco
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA
| |
Collapse
|
27
|
Comprehensive Comparison of Virtual Monoenergetic and Linearly Blended Reconstruction Techniques in Third-Generation Dual-Source Dual-Energy Computed Tomography Angiography of the Thorax and Abdomen. Invest Radiol 2016; 51:582-90. [DOI: 10.1097/rli.0000000000000272] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Popp HD, Meyer M, Brendel S, Prinzhorn W, Naumann N, Weiss C, Seifarth W, Schoenberg SO, Hofmann WK, Henzler T, Fabarius A. Leukocyte DNA damage after reduced and conventional absorbed radiation doses using 3rd generation dual-source CT technology. Eur J Radiol Open 2016; 3:134-7. [PMID: 27437433 PMCID: PMC4939318 DOI: 10.1016/j.ejro.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Purpose Computed tomography (CT) scans are an important source of ionizing irradiation (IR) in medicine that can induce a variety of DNA damage in human tissues. With technological improvements CT scans at reduced absorbed doses became feasible presumably lowering genotoxic side effects. Materials and methods For measuring DNA damage we performed γH2AX foci microscopy in peripheral blood mononuclear cells (PBMC) after exposure to reduced and conventional absorbed radiation doses using 3rd generation dual-source CT (DSCT) technology. Results CT scans performed at reduced absorbed doses of 3 mGy induced significant lower levels (p < 0.0001) of DNA damage (0.05 focus per cell ± 0.01 [mean ± standard error of mean]) at 5 min after IR compared to conventional absorbed doses of 15 mGy (0.30 focus per cell ± 0.03). With ongoing DNA repair background γH2AX foci levels (0.05 focus per cell) were approached at 24 h after CT with both protocols. Conclusion Our results provide evidence that reduced absorbed doses mediated by adjusted tube current in 3rd generation DSCT induce lower levels of DNA damage in PBMC compared to conventional absorbed doses suggesting a lower genotoxic risk for state-of-the-art tube current reduced CT protocols.
Collapse
Affiliation(s)
- Henning D Popp
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Susanne Brendel
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Wiltrud Prinzhorn
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christel Weiss
- Department of Statistical Analysis, Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Wolf-K Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
29
|
Evaluation of a Net Dose-Reducing Organ-Based Tube Current Modulation Technique: Comparison With Standard Dose and Bismuth-Shielded Acquisitions. AJR Am J Roentgenol 2016; 206:1233-40. [DOI: 10.2214/ajr.15.15778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Aghayev A, Murphy DJ, Keraliya AR, Steigner ML. Recent developments in the use of computed tomography scanners in coronary artery imaging. Expert Rev Med Devices 2016; 13:545-53. [PMID: 27140944 DOI: 10.1080/17434440.2016.1184968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Within the past decade, substantial evolution of Coronary CT Angiography (CCTA) has affected evaluation and management of coronary artery disease. In particular, technical advancement of hardware technology and image reconstruction of CT scanners have played an important role in this context making it possible to acquire abundant data with excellent temporal and spatial resolution within a shorter scan time. In addition, a concern related to the high radiation exposure in the initial noninvasive coronary artery imaging has triggered improvement in dose reduction techniques. AREAS COVERED In this review article, we have focused on recent technological developments in CT scanners and the impact of these developments on CCTA parameters. Expert Commentary: CCTA plays an important role in coronary artery disease management, and technical development of the CT scanners can be expected to address and remedy technical limitations.
Collapse
Affiliation(s)
- Ayaz Aghayev
- a Department of Radiology , Brigham and Women's Hospital , Boston , MA , USA
| | - David J Murphy
- a Department of Radiology , Brigham and Women's Hospital , Boston , MA , USA
| | - Abhishek R Keraliya
- a Department of Radiology , Brigham and Women's Hospital , Boston , MA , USA
| | - Michael L Steigner
- a Department of Radiology , Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
31
|
Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison. Eur J Radiol 2016; 85:972-8. [DOI: 10.1016/j.ejrad.2016.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/18/2016] [Accepted: 02/21/2016] [Indexed: 12/13/2022]
|
32
|
Lell MM, Scharf M, Eller A, Wuest W, Allmendinger T, Fuchs F, Achenbach S, Uder M, May MS. Feasibility of Respiratory-gated High-pitch Spiral CT:: Free-breathing Inspiratory Image Quality. Acad Radiol 2016; 23:406-12. [PMID: 26853970 DOI: 10.1016/j.acra.2015.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 01/16/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to develop and implement a respiratory-gated setup for dual-source computed tomography (CT) at high pitch to examine patients in a reproducible inspiratory phase. MATERIALS AND METHODS Twenty-one patients underwent free-breathing respiratory-gated chest CT using a high-pitch scan mode no more than 6 months after inspiratory breath-held nongated CT, which serves as reference. Scan parameters were as follows: pitch = 3.4, 128 × 0.6 mm collimation, 0.28 s gantry rotation time, and 150 ref.mAs per tube at 120 kV. The examinations were triggered using the tidal wave provided by a respiratory-gating system as input signal. Image quality was assessed focusing on artifacts and delineation of the anatomical and pathological structures. Lung volumes were measured on both free-breathing and reference examinations. RESULTS All examinations were performed without complications. Image quality was high with both protocols. Significantly less motion artifacts were recorded with the high-pitch mode compared to the reference (P = 0.02). Most of the artifacts were located in the peripheral parts of the lower lobes for the study group and in the central part of the left lower lobe for the reference. Average total lung volume was 4.5 ± 1.5 L in respiratory-gated examinations and 5.8 ± 0.9 L in examinations with breath-hold in inspiration. CONCLUSIONS High-pitch chest CT scanning during free breathing minimizes motion artifacts, improving image quality in patients with limited breath-holding abilities. To assure scanning in an inspiratory phase, data acquisition should be triggered with a respiratory-gating system.
Collapse
|
33
|
Boos J, Kröpil P, Lanzman RS, Aissa J, Schleich C, Heusch P, Sawicki LM, Antoch G, Thomas C. CT pulmonary angiography: simultaneous low-pitch dual-source acquisition mode with 70 kVp and 40 ml of contrast medium and comparison with high-pitch spiral dual-source acquisition with automated tube potential selection. Br J Radiol 2016; 89:20151059. [PMID: 27007972 DOI: 10.1259/bjr.20151059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the feasibility of a 70-kVp CT pulmonary angiography (CTPA) protocol using simultaneous dual-source (SimDS) acquisition mode with 40 ml of contrast medium (CM) and comparison with a high-pitch spiral dual-source (SpiralDS) acquisition protocol with automated tube potential selection (ATPS). METHODS Following the introduction of a new 70-kVp/40-ml SimDS-CTPA protocol in December 2014 for all patients with a body mass index (BMI) below 35 kg m(-2), the first 35 patients were retrospectively included in this study and assigned to Group A (BMI: 27 ± 4 kg m(-2), age: 66 ± 15 years). The last 35 patients with a BMI below 35 kg m(-2) who had received SpiralDS-CTPA with ATPS were included for comparison (Group B) (70 ml CM; BMI: 27 ± 4 kg m(-2), age: 68 ± 16 years). Subjective image quality (image quality) was assessed by two radiologists (from 1, non-diagnostic, to 4, excellent). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), volumetric CT dose index (CTDIvol), dose-length product (DLP) and effective dose were assessed. RESULTS All examinations were of diagnostic image quality. Subjective image quality, SNR and CNR were comparable between Groups A and B (3.7 ± 0.6 vs 3.7 ± 0.5, 14.6 ± 6.0 vs 13.9 ± 3.7 and 12.4 ± 5.7 vs 11.6 ± 3.3, respectively; p > 0.05). CTDIvol, DLP and effective dose were significantly lower in Group A than in Group B (4.5 ± 1.6 vs 7.5 ± 2.1 mGy, 143.3 ± 44.8 vs 278.3 ± 79.44 mGy cm and 2.0 ± 0.6 vs 3.9 ± 1.1 mSv, respectively; p < 0.05). CONCLUSION 70-kVp SimDS-CTPA with 40 ml of CM is feasible and provides diagnostic image quality, while radiation dose and CM can be reduced by almost 50% and 40%, respectively, compared with a SpiralDS-CTPA protocol with ATPS. ADVANCES IN KNOWLEDGE 70-kVp SimDS-CTPA with 40 ml of CM is feasible in patients with a BMI up to 35 kg m(-2) and can help reduce radiation exposure and CM in these patients.
Collapse
Affiliation(s)
- Johannes Boos
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Patric Kröpil
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Rotem S Lanzman
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Joel Aissa
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Christoph Schleich
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Philipp Heusch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lino M Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Christoph Thomas
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
34
|
Impact of the scout view orientation on the radiation exposure and image quality in thoracic and abdominal CT. Eur Radiol 2016; 26:4072-4079. [PMID: 26943131 DOI: 10.1007/s00330-016-4285-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/24/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To assess the impact of the scout view orientation on radiation exposure and image quality in thoracoabdominal CT, when automated tube voltage selection (ATVS) and automated tube current modulation (ATCM) are used in combination with scan planning on a single scout view. METHODS Fifty patients underwent two thoracoabdominal CT examinations, one planned on an anteroposterior scout view, one planned on a lateral scout view. Both examinations included contrast-enhanced imaging of chest (CH) and abdomen (AB) and non-contrast-enhanced imaging of the liver (LI). For all examinations the same imaging protocol was used on the same dual-source CT scanner. The radiation exposure was recorded and objective as well as visual image quality was assessed for all examinations. RESULTS The median dose-length product was significantly lower in scans planned on a lateral scout view (CH: 179 vs. 218 mGy*cm, LI: 148 vs. 178 mGy*cm, AB: 324 vs. 370 mGy*cm, p < 0.0001). Objective image quality was marginal lower in scans planned on a lateral scout view, whereas the visual image quality was rated as equal. CONCLUSION At the tested radiation doses, the orientation of the scout view has a significant impact on the radiation exposure but no clinically relevant impact on the image quality. KEY POINTS • The scout view orientation has a significant impact on the radiation exposure. • The scout view orientation has no clinically relevant impact on image quality. • A lateral scout view should be preferred with regard to radiation exposure.
Collapse
|
35
|
Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3(rd) generation dual-source CT. Eur Radiol 2016; 26:3608-16. [PMID: 26847044 DOI: 10.1007/s00330-015-4191-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To investigate the relationship between automated tube voltage selection (ATVS) and body mass index (BMI) and its effect on image quality and radiation dose of coronary CT angiography (CCTA). METHODS We evaluated 272 patients who underwent CCTA with 3(rd) generation dual-source CT (DSCT). Prospectively ECG-triggered spiral acquisition was performed with automated tube current selection and advanced iterative reconstruction. Tube voltages were selected by ATVS (70-120 kV). BMI, effective dose (ED), and vascular attenuation in the coronary arteries were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used for subjective image quality analysis. RESULTS Image quality was rated good to excellent in 98.9 % of examinations without significant differences for proximal and distal attenuation (all p ≥ .0516), whereas image noise was rated significantly higher at 70 kV compared to ≥100 kV (all p < .0266). However, no significant differences were observed in SNR or CNR at 70-120 kV (all p ≥ .0829). Mean ED at 70-120 kV was 1.5 ± 1.2 mSv, 2.4 ± 1.5 mSv, 3.6 ± 2.7 mSv, 5.9 ± 4.0 mSv, 7.9 ± 4.2 mSv, and 10.7 ± 4.1 mSv, respectively (all p ≤ .0414). Correlation analysis showed a moderate association between tube voltage and BMI (r = .639). CONCLUSION ATVS allows individual tube voltage adaptation for CCTA performed with 3(rd) generation DSCT, resulting in significantly decreased radiation exposure while maintaining image quality. KEY POINTS • Automated tube voltage selection allows an individual tube voltage adaption in CCTA. • A tube voltage-based reduction of contrast medium volume is feasible. • Image quality was maintained while radiation exposure was significantly decreased. • A moderate association between tube voltage and body mass index was found.
Collapse
|
36
|
Scholtz JE, Kaup M, Hüsers K, Albrecht MH, Bodelle B, Metzger SC, Kerl JM, Bauer RW, Lehnert T, Vogl TJ, Wichmann JL. Advanced Modeled Iterative Reconstruction in Low-Tube-Voltage Contrast-Enhanced Neck CT: Evaluation of Objective and Subjective Image Quality. AJNR Am J Neuroradiol 2016; 37:143-50. [PMID: 26427836 DOI: 10.3174/ajnr.a4502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/10/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Dose-saving techniques in neck CT cause increased image noise that can be counteracted by iterative reconstruction. Our aim was to evaluate the image quality of advanced modeled iterative reconstruction (ADMIRE) in contrast-enhanced low-tube-voltage neck CT. MATERIALS AND METHODS Sixty-one patients underwent 90-kV(peak) neck CT by using third-generation 192-section dual-source CT. Image series were reconstructed with standard filtered back-projection and ADMIRE strength levels 1, 3, and 5. Attenuation and noise of the sternocleidomastoid muscle, internal jugular vein, submandibular gland, tongue, subscapularis muscle, and cervical fat were measured. Signal-to-noise and contrast-to-noise ratios were calculated. Two radiologists assessed image noise, image contrast, delineation of smaller structures, and overall diagnostic acceptability. Interobserver agreement was calculated. RESULTS Image noise was significantly reduced by using ADMIRE compared with filtered back-projection with the lowest noise observed in ADMIRE 5 (filtered back-projection, 9.4 ± 2.4 Hounsfield units [HU]; ADMIRE 1, 8.3 ± 2.8 HU; ADMIRE 3, 6.7 ± 2.0 HU; ADMIRE 5, 5.4 ± 1.7 HU; all, P < .001). Sternocleidomastoid SNR and internal jugular vein-sternocleidomastoid contrast-to-noise ratios were significantly higher for ADMIRE with the best results in ADMIRE 5 (all, P < .001). Subjective image quality and image contrast of ADMIRE 3 and 5 were consistently rated better than those for filtered back-projection and ADMIRE 1 (all, P < .001). Image noise was rated highest for ADMIRE 5 (all, P < .005). Delineation of smaller structures was voted higher in all ADMIRE strength levels compared with filtered back-projection (P < .001). Global interobserver agreement was good (0.75). CONCLUSIONS Contrast-enhanced 90-kVp neck CT is feasible, and ADMIRE 5 shows superior objective image quality compared with filtered back-projection. ADMIRE 3 and 5 show the best subjective image quality.
Collapse
Affiliation(s)
- J-E Scholtz
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - M Kaup
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - K Hüsers
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - M H Albrecht
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - B Bodelle
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - S C Metzger
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - J M Kerl
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - R W Bauer
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - T Lehnert
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - T J Vogl
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany
| | - J L Wichmann
- From the Department of Diagnostic and Interventional Radiology (J.-E.S., M.K., K.H., M.H.A., B.B., S.C.M., J.M.K., R.W.B., T.L., T.J.V., J.L.W.), University Hospital Frankfurt, Frankfurt, Germany Department of Radiology and Radiological Science (J.L.W.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Filev PD, Mittal PK, Tang X, Duong PA, Wang X, Small WC, Applegate K, Moreno CC. Increased Computed Tomography Dose Due to Miscentering With Use of Automated Tube Voltage Selection: Phantom and Patient Study. Curr Probl Diagn Radiol 2015; 45:265-70. [PMID: 26810714 DOI: 10.1067/j.cpradiol.2015.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022]
Abstract
The purpose of the article is to determine if miscentering affected dose with use of automated tube voltage selection software. An anthropomorphic phantom was imaged at different table heights (centered in the computed tomography [CT] gantry, and -6, -3, +3, and +5.7cm relative to the centered position). Topogram magnification, tube voltage selection, and dose were assessed. Effect of table height on dose also was assessed retrospectively in human subjects (n = 50). When the CT table was positioned closer to the x-ray source, subjects appeared up to 33% magnified in topogram images. When subjects appeared magnified in topogram images, automated software selected higher tube potentials and tube currents that were based on the magnified size of the subject rather than the subject׳s true size. Table height strongly correlated with CT dose index (r = 0.98, P < 0.05) and dose length product (r = 0.98, P < 0.05) in the phantom study. Transverse dimension in the topogram highly correlated with dose in human subjects (r = 0.75-0.87, P <0.05). Miscentering results in increased dose due to topogram magnification with automated voltage selection software.
Collapse
Affiliation(s)
- Peter D Filev
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Pardeep K Mittal
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Xiangyang Tang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Phuong-Anh Duong
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Xiaojing Wang
- Biostatistics Shared Core Resource at Winship Cancer Institute, Atlanta, GA
| | - William C Small
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Kimberly Applegate
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Courtney C Moreno
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
38
|
|