1
|
Zsarnóczay E, Varga-Szemes A, Emrich T, Szilveszter B, van der Werf NR, Mastrodicasa D, Maurovich-Horvat P, Willemink MJ. Characterizing the Heart and the Myocardium With Photon-Counting CT. Invest Radiol 2023; 58:505-514. [PMID: 36822653 DOI: 10.1097/rli.0000000000000956] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
ABSTRACT Noninvasive cardiac imaging has rapidly evolved during the last decade owing to improvements in computed tomography (CT)-based technologies, among which we highlight the recent introduction of the first clinical photon-counting detector CT (PCD-CT) system. Multiple advantages of PCD-CT have been demonstrated, including increased spatial resolution, decreased electronic noise, and reduced radiation exposure, which may further improve diagnostics and may potentially impact existing management pathways. The benefits that can be obtained from the initial experiences with PCD-CT are promising. The implementation of this technology in cardiovascular imaging allows for the quantification of coronary calcium, myocardial extracellular volume, myocardial radiomics features, epicardial and pericoronary adipose tissue, and the qualitative assessment of coronary plaques and stents. This review aims to discuss these major applications of PCD-CT with a focus on cardiac and myocardial characterization.
Collapse
Affiliation(s)
| | - Akos Varga-Szemes
- From the Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston
| | | | | | | | | | | | | |
Collapse
|
2
|
Zhang L, Li L, Feng G, Fan T, Jiang H, Wang Z. Advances in CT Techniques in Vascular Calcification. Front Cardiovasc Med 2021; 8:716822. [PMID: 34660718 PMCID: PMC8511450 DOI: 10.3389/fcvm.2021.716822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes, hypertension, and other diseases, increases the incidence and mortality of cardiovascular diseases. Therefore, the prevention and detection of vascular calcification play an important role. At present, various techniques have been applied to the analysis of vascular calcification, but clinical examination mainly depends on non-invasive and invasive imaging methods to detect and quantify. Computed tomography (CT), as a commonly used clinical examination method, can analyze vascular calcification. In recent years, with the development of technology, in addition to traditional CT, some emerging types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging and providing anatomical information for calcification. This review focuses on the latest application of various CT techniques in vascular calcification.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingpan Fan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Kwan AC, Pourmorteza A, Stutman D, Bluemke DA, Lima JAC. Next-Generation Hardware Advances in CT: Cardiac Applications. Radiology 2020; 298:3-17. [PMID: 33201793 DOI: 10.1148/radiol.2020192791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Impending major hardware advances in cardiac CT include three areas: ultra-high-resolution (UHR) CT, photon-counting CT, and phase-contrast CT. Cardiac CT is a particularly demanding CT application that requires a high degree of temporal resolution, spatial resolution, and soft-tissue contrast in a moving structure. In this review, cardiac CT is used to highlight the strengths of these technical advances. UHR CT improves visualization of calcified and stented vessels but may result in increased noise and radiation exposure. Photon-counting CT uses multiple photon energies to reduce artifacts, improve contrast resolution, and perform material decomposition. Finally, phase-contrast CT uses x-ray refraction properties to improve spatial and soft-tissue contrast. This review describes these hardware advances in CT and their relevance to cardiovascular imaging.
Collapse
Affiliation(s)
- Alan C Kwan
- From the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP, Suite A3600, Los Angeles, CA 90048-0750 (A.C.K.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Winship Cancer Institute, Emory University, Atlanta, Ga (A.P.); Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Ga (A.P.); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Md (D.S.); Extreme Light Infrastructure-Nuclear Physics, Bucharest-Magurele, Romania (D.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (D.A.B.); and Department of Cardiology, The Johns Hopkins Hospital, Baltimore, Md (J.A.C.L.)
| | - Amir Pourmorteza
- From the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP, Suite A3600, Los Angeles, CA 90048-0750 (A.C.K.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Winship Cancer Institute, Emory University, Atlanta, Ga (A.P.); Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Ga (A.P.); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Md (D.S.); Extreme Light Infrastructure-Nuclear Physics, Bucharest-Magurele, Romania (D.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (D.A.B.); and Department of Cardiology, The Johns Hopkins Hospital, Baltimore, Md (J.A.C.L.)
| | - Dan Stutman
- From the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP, Suite A3600, Los Angeles, CA 90048-0750 (A.C.K.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Winship Cancer Institute, Emory University, Atlanta, Ga (A.P.); Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Ga (A.P.); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Md (D.S.); Extreme Light Infrastructure-Nuclear Physics, Bucharest-Magurele, Romania (D.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (D.A.B.); and Department of Cardiology, The Johns Hopkins Hospital, Baltimore, Md (J.A.C.L.)
| | - David A Bluemke
- From the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP, Suite A3600, Los Angeles, CA 90048-0750 (A.C.K.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Winship Cancer Institute, Emory University, Atlanta, Ga (A.P.); Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Ga (A.P.); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Md (D.S.); Extreme Light Infrastructure-Nuclear Physics, Bucharest-Magurele, Romania (D.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (D.A.B.); and Department of Cardiology, The Johns Hopkins Hospital, Baltimore, Md (J.A.C.L.)
| | - João A C Lima
- From the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP, Suite A3600, Los Angeles, CA 90048-0750 (A.C.K.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Winship Cancer Institute, Emory University, Atlanta, Ga (A.P.); Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Ga (A.P.); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Md (D.S.); Extreme Light Infrastructure-Nuclear Physics, Bucharest-Magurele, Romania (D.S.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (D.A.B.); and Department of Cardiology, The Johns Hopkins Hospital, Baltimore, Md (J.A.C.L.)
| |
Collapse
|
5
|
Hauke C, Bartl P, Leghissa M, Ritschl L, Sutter SM, Weber T, Zeidler J, Freudenberger J, Mertelmeier T, Radicke M, Michel T, Anton G, Meinel FG, Baehr A, Auweter S, Bondesson D, Gaass T, Dinkel J, Reiser M, Hellbach K. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects. Med Phys 2018; 45:2565-2571. [DOI: 10.1002/mp.12889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- C. Hauke
- Siemens Healthcare GmbH; 91301 Forchheim Germany
- Erlangen Centre for Astroparticle Physics; FAU Erlangen-Nuremberg; 91058 Erlangen Germany
| | - P. Bartl
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | - M. Leghissa
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | - L. Ritschl
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | - S. M. Sutter
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | - T. Weber
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | - J. Zeidler
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | | | | | - M. Radicke
- Siemens Healthcare GmbH; 91301 Forchheim Germany
| | - T. Michel
- Erlangen Centre for Astroparticle Physics; FAU Erlangen-Nuremberg; 91058 Erlangen Germany
| | - G. Anton
- Erlangen Centre for Astroparticle Physics; FAU Erlangen-Nuremberg; 91058 Erlangen Germany
| | - F. G. Meinel
- Department of Diagnostic and Interventional Radiology; University of Rostock Medical Center; 18057 Rostock Germany
| | - A. Baehr
- Department of Veterinary Science; LMU Munich; 85764 Oberschleissheim Germany
| | - S. Auweter
- Department of Radiology; University Hospital; LMU Munich; 80336 Munich Germany
| | - D. Bondesson
- Department of Radiology; University Hospital; LMU Munich; 80336 Munich Germany
| | - T. Gaass
- Department of Radiology; University Hospital; LMU Munich; 80336 Munich Germany
| | - J. Dinkel
- Department of Radiology; University Hospital; LMU Munich; 80336 Munich Germany
| | - M. Reiser
- Department of Radiology; University Hospital; LMU Munich; 80336 Munich Germany
| | - K. Hellbach
- Department of Radiology; University Hospital; LMU Munich; 80336 Munich Germany
| |
Collapse
|
7
|
Pfeiffer F, Reiser M, Rummeny E. [X‑ray Phase Contrast : Principles, potential and advances in clinical translation]. Radiologe 2018; 58:218-225. [PMID: 29374312 DOI: 10.1007/s00117-018-0357-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
More than 100 years ago Max von Laue in Munich discovered that X‑rays can be interpreted not only as X‑ray quanta in a particle picture, but also show a wave character. This property has been used for a long time in basic research (e.g. in crystallography for determining the structure of proteins), but so far has had no application in medical imaging. In the last 10 years, however, very impressive technological progress could be made in preclinical research, which also makes the utilization of the wave character of X‑ray light possible for medical imaging. These novel radiography procedures, so-called phase-contrast and dark-field imaging, have a great potential for a pronounced improvement in X‑ray imaging and therefore, also the diagnosis of important diseases. This article describes the basic principles of these novel procedures, summarizes the preclinical research results already achieved exemplified by various organs and shows the potential for future clinical utilization in radiography and computed tomography.
Collapse
Affiliation(s)
- F Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Department Physik & Munich School of BioEngineering, Technische Universität München, München, Deutschland. .,Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland.
| | - M Reiser
- Klinik und Poliklinik für Radiologie, Klinikum der Universität, Ludwig-Maximilians-Universität München, München, Deutschland
| | - E Rummeny
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| |
Collapse
|