1
|
Jiang J, Miao L, Zhang L, Shi Z, Zhang H, Wen X, Hu S, Xu L, Gong L, Li M. Assessing the Feasibility of Simplifying the Scanning Protocol for Spinal Metastases With Vertebral Compression Fractures Using Only the Dixon T2-Weighted Sequence. J Comput Assist Tomogr 2024; 48:826-835. [PMID: 38595136 DOI: 10.1097/rct.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE Conventional imaging protocols, including sagittal T1-weighted imaging (T1WI) and water-only T2-weighted imaging (T2WI), are time consuming when screening for spinal metastases with vertebral compression fractures (VCFs). In this study, we aimed to assess the accuracy of using only the Dixon T2-weighted sequence in the diagnosis of spinal metastases with VCFs to determine its suitability as a simplified protocol for this task. METHODS This retrospective study included 27 patients diagnosed with spinal metastases and VCFs. Qualitative analysis was performed separately by two musculoskeletal radiologists, who independently performed diagnostic evaluations of each vertebra using both conventional and simplified protocols. McNemar's test was then used to compare the differences in diagnostic results, and Cohen's kappa coefficient was used to assess interobserver and interprotocol agreement. Diagnostic performance values for both protocols, including sensitivity, specificity, and area under the curve, were then determined based on the reference standard. Quantitative image analysis was performed randomly for 30 metastases on T1WI and fat-only T2WI to measure the signal intensity, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS The diagnosis of VCFs by both radiologists was in full agreement with the reference standard. The classification of spinal metastases and diagnostic performance values determined by both radiologists were not significantly different between the two protocols (all P > 0.05), and the consistency between observers and protocols was excellent (κ = 0.973-0.991). The contrast-to-noise ratio of fat-only T2WI was significantly higher than that of T1WI ( P < 0.001). CONCLUSIONS The Dixon T2-weighted sequence alone performed well in diagnosing spinal metastases with VCFs, performing no worse than the conventional protocol (T1WI and water-only T2WI). This suggests that the Dixon T2-weighted sequence alone can serve as a simplified protocol for the diagnosis of spinal metastases with VCFs, thereby avoiding the need for more intricate scanning procedures.
Collapse
Affiliation(s)
| | - Lei Miao
- From the Departments of Diagnostic Radiology
| | - Li Zhang
- From the Departments of Diagnostic Radiology
| | - Zhuo Shi
- From the Departments of Diagnostic Radiology
| | | | - Xin Wen
- From the Departments of Diagnostic Radiology
| | - Sijie Hu
- From the Departments of Diagnostic Radiology
| | | | - Lihua Gong
- Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- From the Departments of Diagnostic Radiology
| |
Collapse
|
2
|
Gammaraccio F, Villano D, Irrera P, Anemone AA, Carella A, Corrado A, Longo DL. Development and Validation of Four Different Methods to Improve MRI-CEST Tumor pH Mapping in Presence of Fat. J Imaging 2024; 10:166. [PMID: 39057737 PMCID: PMC11277679 DOI: 10.3390/jimaging10070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
CEST-MRI is an emerging imaging technique suitable for various in vivo applications, including the quantification of tumor acidosis. Traditionally, CEST contrast is calculated by asymmetry analysis, but the presence of fat signals leads to wrong contrast quantification and hence to inaccurate pH measurements. In this study, we investigated four post-processing approaches to overcome fat signal influences and enable correct CEST contrast calculations and tumor pH measurements using iopamidol. The proposed methods involve replacing the Z-spectrum region affected by fat peaks by (i) using a linear interpolation of the fat frequencies, (ii) applying water pool Lorentzian fitting, (iii) considering only the positive part of the Z-spectrum, or (iv) calculating a correction factor for the ratiometric value. In vitro and in vivo studies demonstrated the possibility of using these approaches to calculate CEST contrast and then to measure tumor pH, even in the presence of moderate to high fat fraction values. However, only the method based on the water pool Lorentzian fitting produced highly accurate results in terms of pH measurement in tumor-bearing mice with low and high fat contents.
Collapse
Affiliation(s)
- Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Pietro Irrera
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Annasofia A. Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| |
Collapse
|
3
|
Udayakumar D, Madhuranthakam AJ, Doğan BE. Magnetic Resonance Perfusion Imaging for Breast Cancer. Magn Reson Imaging Clin N Am 2024; 32:135-150. [PMID: 38007276 DOI: 10.1016/j.mric.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide, carrying a significant socioeconomic burden. Breast cancer is a heterogeneous disease with 4 major subtypes identified. Each subtype has unique prognostic factors, risks, treatment responses, and survival rates. Advances in targeted therapies have considerably improved the 5-year survival rates for primary breast cancer patients largely due to widespread screening programs that enable early detection and timely treatment. Imaging techniques are indispensable in diagnosing and managing breast cancer. While mammography is the primary screening tool, MRI plays a significant role when mammography results are inconclusive or in patients with dense breast tissue. MRI has become standard in breast cancer imaging, providing detailed anatomic and functional data, including tumor perfusion and cellularity. A key characteristic of breast tumors is angiogenesis, a biological process that promotes tumor development and growth. Increased angiogenesis in tumors generally indicates poor prognosis and increased risk of metastasis. Dynamic contrast-enhanced (DCE) MRI measures tumor perfusion and serves as an in vivo metric for angiogenesis. DCE-MRI has become the cornerstone of breast MRI, boasting a high negative-predictive value of 89% to 99%, although its specificity can vary. This review presents a thorough overview of magnetic resonance (MR) perfusion imaging in breast cancer, focusing on the role of DCE-MRI in clinical applications and exploring emerging MR perfusion imaging techniques.
Collapse
Affiliation(s)
- Durga Udayakumar
- Department of Radiology, Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Başak E Doğan
- Department of Radiology, Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Eskreis-Winkler S, Sung JS, Dixon L, Monga N, Jindal R, Simmons A, Thakur S, Sevilimedu V, Sutton E, Comstock C, Feigin K, Pinker K. High-Temporal/High-Spatial Resolution Breast Magnetic Resonance Imaging Improves Diagnostic Accuracy Compared With Standard Breast Magnetic Resonance Imaging in Patients With High Background Parenchymal Enhancement. J Clin Oncol 2023; 41:4747-4755. [PMID: 37561962 PMCID: PMC10602549 DOI: 10.1200/jco.22.00635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 01/05/2023] [Accepted: 06/16/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE To compare breast magnetic resonance imaging (MRI) diagnostic performance using a standard high-spatial resolution protocol versus a simultaneous high-temporal/high-spatial resolution (HTHS) protocol in women with high levels of background parenchymal enhancement (BPE). MATERIALS AND METHODS We conducted a retrospective study of contrast-enhanced breast MRIs performed at our institution before and after the introduction of the HTHS protocol. We compared diagnostic performance of the HTHS and standard protocol by comparing cancer detection rate (CDR) and positive predictive value of biopsy (PPV3) among women with high BPE (ie, marked or moderate). RESULTS Among women with high BPE, the HTHS protocol demonstrated increased CDR (23.6 per 1,000 patients v 7.9 per 1,000 patients; P = 0. 013) and increased PPV3 (16.0% v 6.3%; P = .021) compared with the standard protocol. This corresponded to a 9.8% (95% CI, 1.29 to 18.3) decrease in the proportion of unnecessary biopsies among high-BPE patients and an additional cancer yield of 15.7 per 1,000 patients (95% CI, 1.3 to 18.3). CONCLUSION Among women with high BPE, HTHS MRI improved diagnostic performance, leading to an additional cancer yield of 15.7 cancers per 1,000 women and concomitantly decreasing unnecessary biopsies by 9.8%. A multisite prospective trial is warranted to confirm these findings and to pave the way for more widespread clinical implementation.
Collapse
Affiliation(s)
| | - Janice S. Sung
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Linden Dixon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natasha Monga
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ragni Jindal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sunitha Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Varadan Sevilimedu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Sutton
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Kimberly Feigin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
Real-Time Magnetic Resonance Imaging: Radial Gradient-Echo Sequences With Nonlinear Inverse Reconstruction. Invest Radiol 2020; 54:757-766. [PMID: 31261294 DOI: 10.1097/rli.0000000000000584] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate a real-time magnetic resonance imaging (MRI) method that not only promises high spatiotemporal resolution but also practical robustness in a wide range of scientific and clinical applications. MATERIALS AND METHODS The proposed method relies on highly undersampled gradient-echo sequences with radial encoding schemes. The serial image reconstruction process solves the true mathematical task that emerges as a nonlinear inverse problem with the complex image and all coil sensitivity maps as unknowns. Extensions to model-based reconstructions for quantitative parametric mapping further increase the number of unknowns, for example, by adding parameters for phase-contrast flow or T1 relaxation. In all cases, an iterative numerical solution that minimizes a respective cost function is achieved with use of the iteratively regularized Gauss-Newton method. Convergence is supported by regularization, for example, to the preceding frame, whereas temporal fidelity is ensured by downsizing the regularization strength in comparison to the data consistency term in each iterative step. Practical implementations of highly parallelized algorithms are realized on a computer with multiple graphical processing units. It is "invisibly" integrated into a commercial 3-T MRI system to allow for conventional usage and to provide online reconstruction, display, and storage of regular DICOM image series. RESULTS Depending on the application, the proposed method offers serial imaging, that is, the recording of MRI movies, with variable spatial resolution and up to 100 frames per second (fps)-corresponding to 10 milliseconds image acquisition times. For example, movements of the temporomandibular joint during opening and closing of the mouth are visualized with use of simultaneous dual-slice movies of both joints at 2 × 10 fps (50 milliseconds per frame). Cardiac function may be studied at 30 to 50 fps (33.3 to 20 milliseconds), whereas articulation processes typically require 50 fps (20 milliseconds) or orthogonal dual-slice acquisitions at 2 × 25 fps (20 milliseconds). Methodological extensions to model-based reconstructions achieve improved quantitative mapping of flow velocities and T1 relaxation times in a variety of clinical scenarios. CONCLUSIONS Real-time gradient-echo MRI with extreme radial undersampling and nonlinear inverse reconstruction allows for direct monitoring of arbitrary physiological processes and body functions. In many cases, pertinent applications offer hitherto impossible clinical studies (eg, of high-resolution swallowing dynamics) or bear the potential to replace existing MRI procedures (eg, electrocardiogram-gated cardiac examinations). As a consequence, many novel opportunities will require a change of paradigm in MRI-based radiology. At this stage, extended clinical trials are needed.
Collapse
|
6
|
Solomon E, Liberman G, Nissan N, Furman‐Haran E, Sklair‐Levy M, Frydman L. Diffusion‐weighted breast MRI of malignancies with submillimeter resolution and immunity to artifacts by spatiotemporal encoding at 3T. Magn Reson Med 2020; 84:1391-1403. [DOI: 10.1002/mrm.28213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Eddy Solomon
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Gilad Liberman
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| | - Noam Nissan
- Department of Radiology Sheba‐Medical‐Center Ramat‐Gan Israel
| | - Edna Furman‐Haran
- Life Sciences Core Facilities Weizmann Institute of Science Rehovot Israel
| | - Miri Sklair‐Levy
- Department of Radiology Sheba‐Medical‐Center Ramat‐Gan Israel
- Sackler School of Medicine Tel‐Aviv University Tel‐Aviv Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
7
|
|
8
|
Application of dynamic magnetic resonance imaging information technology in adjuvant chemotherapy for breast cancer. J Infect Public Health 2019; 13:2062-2066. [PMID: 31296481 DOI: 10.1016/j.jiph.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022] Open
Abstract
In order to study the application of dynamic magnetic resonance imaging information technology in breast cancer adjuvant chemotherapy, female patients diagnosed with breast cancer in The People's Hospital of Shanxi Province are selected as research objects. Dynamic enhanced magnetic resonance imaging scans are performed to compare pathological changes by hematoxylin and eosin staining. The dynamic NMR morphological changes are used to evaluate the efficacy of neoadjuvant chemotherapy. Semi-quantitative analysis is used to compare the TIC types of lesions, and the changes in quantitative analysis parameters are used to evaluate the efficacy. The results show that in the dynamic magnetic resonance imaging technique, the effective group (RECIST standard is CR and PR) has statistically significant changes in the quantitative analysis parameters Ktrans and Kep before and after neoadjuvant chemotherapy. Ktrans and Kep are used in neoadjuvant chemotherapy for breast cancer. The assessment is consistent with the morphological RECIST criteria assessment and can be used for qualitative diagnosis of breast tumors.
Collapse
|
9
|
Honda M, Kataoka M, Onishi N, Iima M, Ohashi A, Kanao S, Nickel MD, Toi M, Togashi K. New parameters of ultrafast dynamic contrast-enhanced breast MRI using compressed sensing. J Magn Reson Imaging 2019; 51:164-174. [PMID: 31215107 DOI: 10.1002/jmri.26838] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ultrafast dynamic contrast-enhanced (UF-DCE) breast MRI is considered a promising method of accelerated breast MRI. However, the value of new kinetic parameters derived from UF-DCE need clinical evaluation. PURPOSE To evaluate the diagnostic performance of the maximum slope (MS), time to enhancement (TTE), and time interval between arterial and venous visualization (AVI) derived from UF-DCE MRI using compressed sensing (CS). STUDY TYPE Retrospective. POPULATION Seventy-five patients with histologically proven breast lesions. The total number of analyzed lesions was 90 (61 malignant and 29 benign). FIELD STRENGTH/SEQUENCE 3T MRI with UF-DCE MRI based on the 3D gradient-echo volumetric interpolated breath-hold examination (VIBE) sequence using incoherent k-space sampling combined with a CS reconstruction followed by conventional DCE MRI. ASSESSMENT The diagnostic performance of the MS, TTE, AVI, and conventional kinetic analysis was analyzed and compared with histology. STATISTICAL TESTS Wilcoxon rank sum test, receiver operating characteristic analysis. RESULTS The MS was larger and the TTE and AVI were smaller for malignant lesions compared with benign lesions: MS: 29.3%/s and 18.4%/s (P < 0.001), TTE: 7.0 and 12.0 seconds (P < 0.001), AVI: 2.7 and 4.4 frames (P = 0.006) for malignant and benign lesions. The discriminating power of the MS (area under the curve [AUC], 0.76) was slightly better than that of conventional kinetic analysis (AUC, 0.69) and comparable to that of the TTE and AVI (AUC, 0.78 and 0.76 for TTE and AVI, respectively). Invasive lobular carcinoma had smaller MS (21.8%/s) among malignant lesions (29.3%/s). DATA CONCLUSION The MS, TTE, and AVI can be used to evaluate breast lesions with clinical performance equivalent to that of conventional kinetic analysis. These parameters vary among histologies. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:164-174.
Collapse
Affiliation(s)
- Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Natsuko Onishi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akane Ohashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shotaro Kanao
- Department of Diagnostic Radiology, Kobe City Medical Center General Hospital, Kobe, Japan
| | | | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
|
11
|
Compressed-Sensing Accelerated 3-Dimensional Magnetic Resonance Cholangiopancreatography. Invest Radiol 2018; 53:150-157. [DOI: 10.1097/rli.0000000000000421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Benkert T, Tian Y, Huang C, DiBella EVR, Chandarana H, Feng L. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding. Magn Reson Med 2017; 80:286-293. [PMID: 29193380 DOI: 10.1002/mrm.27030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. METHODS GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. RESULTS GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. CONCLUSION The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ye Tian
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Chenchan Huang
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|