1
|
Barbian KP, Lemainque T, Grunden I, Iwa R, Wiegmann B, Linkhorst J, Wessling M, Heyer J, Steinseifer U, Neidlin M, Jansen SV. Tailored 3D Lattice Microstructures for Enhanced Functionality in Blood-Gas Exchange. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501162. [PMID: 40245269 DOI: 10.1002/advs.202501162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Current membrane oxygenators for extracorporeal life support (ECLS) are facing their limits regarding gas exchange efficiency and long-term stability. One aspect adding to these limitations is inhomogeneous blood flow distribution inside the oxygenator's membrane structure. Triply periodic minimal surface (TPMS) lattice structures are proposed to provide increased mass transfer efficiency and local adaptability introducing heterogeneous properties. However, the adaptation of these structures for blood flow, as in ECLS, is challenging as a hemocompatible flow distribution must be established. In this study, this study proposes a novel method for the smooth, multi-scale modification of TPMS lattice structures creating a tailored flow distribution suited for blood-gas exchange. It implements this method into an automatic structure optimization within an oxygenator. After manufacturing prototypes, it experimentally evaluate the 3D flow distribution using time-resolved, contrast enhanced computed tomography comparing the optimized structure to reference geometries. The TPMS structure modification provides a significant change in flow distribution, improving homogeneity by up to 12%. The approach to creating tailored 3D TPMS lattice structures can be directly transferred to various other applications in the field of heat and mass transfer to enhance functionality, e.g., for heat exchangers or membrane contactors.
Collapse
Affiliation(s)
- Kai P Barbian
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Teresa Lemainque
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Ina Grunden
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Roman Iwa
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Implant Research and Development (NIFE), Lower Saxony Center for Biomedical Engineering, Stadtfelddamm 34, 30625, Hannover, Germany
- German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - John Linkhorst
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- Process Engineering of Electrochemical Systems, Technical University of Darmstadt, Otto-Berndt-Str. 2, 64287, Darmstadt, Germany
| | - Matthias Wessling
- Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Jan Heyer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Sebastian V Jansen
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| |
Collapse
|
2
|
Wu CH, Lirng JF, Wu HM, Ling YH, Wang YF, Fuh JL, Lin CJ, Ling K, Wang SJ, Chen SP. Blood-Brain Barrier Permeability in Patients With Reversible Cerebral Vasoconstriction Syndrome Assessed With Dynamic Contrast-Enhanced MRI. Neurology 2021; 97:e1847-e1859. [PMID: 34504032 DOI: 10.1212/wnl.0000000000012776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Blood-brain barrier (BBB) disruption has been proposed to be important in the pathogenesis of reversible cerebral vasoconstriction syndrome (RCVS), but not all patients present an identifiable macroscopic BBB disruption; that is, visible contrast leakage on contrast-enhanced T2 fluid-attenuated inversion recovery imaging. This study aimed to evaluate microscopic BBB permeability and its dynamic change in patients with RCVS. METHODS This prospective cohort implemented 3T dynamic contrast-enhanced MRI. We measured microscopic BBB permeability by determining the whole-brain and white matter hyperintensity (WMH) Ktrans values and evaluated the correlation of whole-brain Ktrans permeability with clinical and vascular measures in transcranial color-coded sonography. RESULTS In total, 176 patients (363 scans) were analyzed and separated into acute (≦30 days) and remission (≧90 days) groups based on the onset-to-examination time. Whole-brain Ktrans values were similar between patients with and without macroscopic BBB disruption in either acute or remission stage. The whole-brain Ktrans was significantly decreased (p < 0.001) from acute to remission stages. The WMH Ktrans was significantly higher than mirror references and decreased from acute to remission stages (p < 0.001). Whole-brain Ktrans correlated with mean pulsatility index (r s = 0.5, p = 0.029), mean resistance index (r s = 0.662, p = 0.002), and distal-to-proximal ratio of resistance index (r s = 0.801, p < 0.001) of M1 segment of middle cerebral arteries at around 10-15 days after onset. The time-trend curve of whole-brain Ktrans depicted dynamic changes during disease course, similar to temporal trends of vasoconstrictions and WMH. DISCUSSION Patients with RCVS presented increased microscopic brain permeability during acute stage, even without discernible macroscopic BBB disruption. The dynamic changes in BBB permeability may be related to impaired cerebral microvascular compliance and WMH formation.
Collapse
Affiliation(s)
- Chia-Hung Wu
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hsiang Ling
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jung Lin
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kan Ling
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- From the Department of Radiology (C.-H.W., J.-F.L., H.-M.W., C.-J.L., K.L.), Department of Neurology, Neurological Institute (Y.-H.L., Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), and Division of Translational Research, Department of Medical Research (S.-P.C.), Taipei Veterans General Hospital; and Institute of Clinical Medicine (C.-H.W., S.-P.C.), School of Medicine (C.-H.W., J.-F.L., H.-M.W., Y.-H.L., Y.-F.W., J.-L.F., C.-J.L., K.L., S.-J.W., S.-P.C.), and Brain Research Center (Y.-F.W., J.-L.F., S.-J.W., S.-P.C.), National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zanardo M, Cozzi A, Trimboli RM, Labaj O, Monti CB, Schiaffino S, Carbonaro LA, Sardanelli F. Technique, protocols and adverse reactions for contrast-enhanced spectral mammography (CESM): a systematic review. Insights Imaging 2019; 10:76. [PMID: 31376021 PMCID: PMC6677840 DOI: 10.1186/s13244-019-0756-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 11/10/2022] Open
Abstract
We reviewed technical parameters, acquisition protocols and adverse reactions (ARs) for contrast-enhanced spectral mammography (CESM). A systematic search in databases, including MEDLINE/EMBASE, was performed to extract publication year, country of origin, study design; patients; mammography unit/vendor, radiation dose, low-/high-energy tube voltage; contrast molecule, concentration and dose; injection modality, ARs and acquisition delay; order of views; examination time. Of 120 retrieved articles, 84 were included from 22 countries (September 2003-January 2019), totalling 14012 patients. Design was prospective in 44/84 studies (52%); in 70/84 articles (83%), a General Electric unit with factory-set kVp was used. Per-view average glandular dose, reported in 12/84 studies (14%), ranged 0.43-2.65 mGy. Contrast type/concentration was reported in 79/84 studies (94%), with Iohexol 350 mgI/mL mostly used (25/79, 32%), dose and flow rate in 72/84 (86%), with 1.5 mL/kg dose at 3 mL/s in 62/72 studies (86%). Injection was described in 69/84 articles (82%), automated in 59/69 (85%), manual in 10/69 (15%) and flush in 35/84 (42%), with 10-30 mL dose in 19/35 (54%). An examination time < 10 min was reported in 65/84 studies (77%), 120 s acquisition delay in 65/84 (77%) and order of views in 42/84 (50%) studies, beginning with the craniocaudal view of the non-suspected breast in 7/42 (17%). Thirty ARs were reported by 14/84 (17%) studies (26 mild, 3 moderate, 1 severe non-fatal) with a pooled rate of 0.82% (fixed-effect model). Only half of CESM studies were prospective; factory-set kVp, contrast 1.5 mL/kg at 3 mL/s and 120 s acquisition delay were mostly used; only 1 severe AR was reported. CESM protocol standardisation is advisable.
Collapse
Affiliation(s)
- Moreno Zanardo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Andrea Cozzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Rubina Manuela Trimboli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Olgerta Labaj
- Department of Morphology, Surgery and Experimental Medicine, Section of Radiology, University of Ferrara, Via Ludovico Ariosto 35, 44121, Ferrara, Italy
| | - Caterina Beatrice Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Simone Schiaffino
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy
| | | | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
- Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese, Italy
| |
Collapse
|