1
|
Gascho D. VIRTual autOPSY-applying CT and MRI for modern forensic death investigations. FRONTIERS IN RADIOLOGY 2025; 5:1557636. [PMID: 40421097 PMCID: PMC12104169 DOI: 10.3389/fradi.2025.1557636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025]
Abstract
Virtual autopsy, an advanced forensic technique, utilizes cutting-edge imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) to investigate the cause and manner of death without the need for physical dissection. By creating detailed, three-dimensional data of the entire body or specific areas of interest, these post-mortem imaging modalities provide a comprehensive, non-invasive approach to examining decedents. This article explores the historical development of virtual autopsy, its current applications in forensic medicine, and its promising future. It highlights the crucial roles of CT and MRI in forensic death investigations, while also addressing the challenges and limitations associated with these imaging techniques in post-mortem examinations.
Collapse
Affiliation(s)
- Dominic Gascho
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zhou S, Zhao S, Chang R, Dong H, Du L, Lu Y, Zhang Q, Zhang Y, Chen Z, Nowak T, Xu Z, Qin L, Yan F. Photon-counting CT Spectral Localizer Radiographs for Lumbar Areal Bone Mineral Density Quantification: A Clinical Study on Accuracy, Reliability, and Diagnostic Performance for Osteoporosis. Acad Radiol 2025:S1076-6332(25)00093-5. [PMID: 39934075 DOI: 10.1016/j.acra.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
RATIONALE AND OBJECTIVES To explore the accuracy, reliability, and diagnostic performance of photon-counting CT (PCCT) spectral localizer radiographs (SLRs) for quantifying lumbar areal bone mineral density (BMD) and detecting osteoporosis (T-score ≤-2.5). MATERIALS AND METHODS This prospective study recruited consecutive participants from April to July 2024. Participants each underwent a dual-energy X-ray absorptiometry (DXA) examination serving as the gold-standard reference for aBMD (aBMDDXA) and a PCCT scan to obtain SLR. The SLRs were reconstructed into hydroxyapatite (HA) and water maps. Lumbar vertebrae (L1 to L4) and soft tissue were blindly and semiautomatically segmented on HA and water maps to calculate aBMDSLR. The agreement and relative absolute error (RAE) between aBMDSLR and aBMDDXA were calculated. Factors that might influence the RAE were evaluated. Using DXA results as the reference, the diagnostic performance of PCCT-SLRs for osteoporosis was assessed. RESULTS A total of 159 participants (88 females) with a median age of 66 years (interquartile range [IQR], 55-72 years) were included. The median (IQR) aBMDDXA and aBMDSLR values were 1.095 (0.936-1.261) g/cm2 and 1.086 (0.932-1.255) g/cm2, respectively. There was excellent agreement between the two methods (mean bias=-0.57%). The median (IQR) RAE was 2.65% (1.23-4.07%). The RAE was unaffected by age, body mass index, aBMD, sex, tube voltage, or tube current. The sensitivity and specificity of PCCT-SLRs for osteoporosis diagnosis were 92.31% (12/13) and 98.63% (144/146), respectively. CONCLUSION The PCCT-SLR is an accurate and reliable approach for lumbar aBMD quantification in humans, with high diagnostic performance for osteoporosis.
Collapse
Affiliation(s)
- Shanshui Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.); Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., F.Y.)
| | - Shutian Zhao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.); Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., F.Y.)
| | - Rui Chang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.)
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.)
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.)
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.)
| | - Qiang Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (Q.Z., Y.Z., Z.C.)
| | - Yin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (Q.Z., Y.Z., Z.C.)
| | - Zhe Chen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (Q.Z., Y.Z., Z.C.)
| | - Tristan Nowak
- Siemens Healthineers AG, Siemensstr. 3, Forchheim 91301, Germany (T.N.)
| | - Zhihan Xu
- CT Collaboration, Siemens Healthineers, Shanghai, China (Z.X.)
| | - Le Qin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.).
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., R.C., H.D., L.D., Y.L., L.Q., F.Y.); Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin Er Road, Shanghai 200025, China (S.Z., S.Z., F.Y.)
| |
Collapse
|
3
|
Moser LJ, Klambauer K, Diaz Machicado MC, Frey D, Mergen V, Eberhard M, Nowak T, Schmidt B, Flohr T, Distler O, Alkadhi H. In Vivo Bone Mineral Density Assessment With Spectral Localizer Radiographs From Photon-Counting Detector CT: Prospective Comparison With DXA. Invest Radiol 2025:00004424-990000000-00290. [PMID: 39899807 DOI: 10.1097/rli.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
PURPOSE The aim of this study was to determine in a prospective patient study the accuracy of areal bone mineral density (aBMD) measurements with spectral localizer radiographs obtained with a clinical photon-counting detector computed tomography (PCD-CT) scanner in comparison with dual-energy x-ray absorptiometry (DXA). METHODS In this institutional review board-approved, prospective study, 41 patients (15 females, 26 males; mean age 61.3 years, age range 35-78 years) underwent PCD-CT of the abdomen with a spectral localizer radiograph (tube voltage 140 kVp, tube current 30 mA) and DXA within a median of 45 days. aBMD values were derived for lumbar vertebrae L1-L4 from both methods and were compared with linear regression, Pearson correlation, intraclass correlation coefficients (ICCs), and Bland-Altman plots. T-scores were calculated on a patient level and were compared between methods. RESULTS DXA and spectral localizer radiographs showed strong correlation in aBMD measurements (R = 0.97, P < 0.001) and patient level T-scores (R = 0.99, P < 0.001). There was a strong agreement between aBMD from both methods (ICC, 0.96; 95% CI, 0.94-0.97). Bland-Altman analysis revealed a very small mean difference in aBMD between methods (mean absolute error 0.019 g/cm2) with narrow limits of agreement (-0.083 g/cm2 to 0.121 g/cm2). Similarly, there were small differences in regard to the T-score (mean absolute error 0.156) with narrow limits of agreement (-0.422 to 0.734) between methods. ICCs indicated an excellent agreement between T-scores from DXA and spectral localizer radiographs (ICC, 0.98; 95% confidence interval, 0.95-0.99). CONCLUSIONS Our prospective patient study indicates that spectral localizer radiographs obtained with a clinical PCD-CT system enable accurate quantification of the lumbar bone areal mineral density. This opens up the opportunity for opportunistic screening of osteoporosis in patients who undergo CT for other indications.
Collapse
Affiliation(s)
- Lukas Jakob Moser
- From the Department of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (L.J.M., K.M., V.M., M.E., T.F., H.A.); Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (M.C.D.M., D.F., O.D.); Siemens Healthineers AG, Forchheim, Germany (T.N., B.S., T.F.); and Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands (T.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Paakkari P, Inkinen SI, Mohammadi A, Nieminen MT, Joenathan A, Grinstaff MW, Töyräs J, Mäkelä JTA, Honkanen JTJ. Photon-counting in dual-contrast-enhanced computed tomography: a proof-of-concept quantitative biomechanical assessment of articular cartilage. Sci Rep 2024; 14:29956. [PMID: 39622931 PMCID: PMC11612382 DOI: 10.1038/s41598-024-78237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
This proof-of-concept study explores quantitative imaging of articular cartilage using photon-counting detector computed tomography (PCD-CT) with a dual-contrast agent approach, comparing it to clinical dual-energy CT (DECT). The diffusion of cationic iodinated CA4 + and non-ionic gadolinium-based gadoteridol contrast agents into ex vivo bovine medial tibial plateau cartilage was tracked over 72 h. Continuous maps of the contrast agents' diffusion were created, and correlations with biomechanical indentation parameters (equilibrium and instantaneous moduli, and relaxation time constants) were examined at 28 specific locations. Cartilage at each location was analyzed as full-thickness to ensure a fair comparison, and calibration-based material decomposition was employed for concentration estimation. Both DECT and PCD-CT exhibit strong correlations between CA4 + content and biomechanical parameters, with PCD-CT showing superior significance, especially at later time points. DECT lacks significant correlations with gadoteridol-related parameters, while PCD-CT identifies noteworthy correlations between gadoteridol diffusion and biomechanical parameters. In summary, the experimental PCD-CT setup demonstrates superior accuracy and sensitivity in concentration estimation, suggesting its potential as a more effective tool for quantitatively assessing articular cartilage condition compared to a conventional clinical DECT scanner.
Collapse
Affiliation(s)
- Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Satu I Inkinen
- HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Ali Mohammadi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Chemistry and Medicine, University of California, Davis, CA, USA
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juuso T J Honkanen
- Radiotherapy Department, Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
5
|
Vosshenrich J, O'Donnell T, Fritz J. Photon-Counting CT in Musculoskeletal Imaging-10 Key Questions Answered. Semin Roentgenol 2024; 59:378-386. [PMID: 39490034 DOI: 10.1053/j.ro.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY; Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY.
| |
Collapse
|
6
|
Gascho D. Photon-counting CT for forensic death investigations-a glance into the future of virtual autopsy. FRONTIERS IN RADIOLOGY 2024; 4:1463236. [PMID: 39351027 PMCID: PMC11440199 DOI: 10.3389/fradi.2024.1463236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
This article explores the potential of photon-counting computed tomography (CT) in forensic medicine for a range of forensic applications. Photon-counting CT surpasses conventional CT in several key areas. It boasts superior spatial and contrast resolution, enhanced image quality at low x-ray energies, and spectral imaging capabilities that enable more precise material differentiation. These advantages translate to superior visualization of bone structures, foreign bodies, and soft tissues in postmortem examinations. The article discusses the technical principles of photon-counting CT detectors and highlights its potential applications in forensic imaging, including high-resolution virtual autopsies, pediatric forensic CT, trauma analysis, and bone density measurements. Furthermore, advancements in vascular imaging and soft tissue contrast promise to propel CT-based death investigations to an even more prominent role. The article concludes by emphasizing the immense potential of this new technology in forensic medicine and anthropology.
Collapse
Affiliation(s)
- Dominic Gascho
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Quintiens J, van Lenthe GH. Photon-Counting Computed Tomography for Microstructural Imaging of Bone and Joints. Curr Osteoporos Rep 2024; 22:387-395. [PMID: 38833188 DOI: 10.1007/s11914-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Recently, photon-counting computed tomography (PCCT) has been introduced in clinical research and diagnostics. This review describes the technological advances and provides an overview of recent applications with a focus on imaging of bone. RECENT FINDINGS PCCT is a full-body scanner with short scanning times that provides better spatial and spectral resolution than conventional energy-integrating-detector CT (EID-CT), along with an up to 50% reduced radiation dose. It can be used to quantify bone mineral density, to perform bone microstructural analyses and to assess cartilage quality with adequate precision and accuracy. Using a virtual monoenergetic image reconstruction, metal artefacts can be greatly reduced when imaging bone-implant interfaces. Current PCCT systems do not allow spectral imaging in ultra-high-resolution (UHR) mode. Given its improved resolution, reduced noise and spectral imaging capabilities PCCT has diagnostic capacities in both qualitative and quantitative imaging that outperform those of conventional CT. Clinical use in monitoring bone health has already been demonstrated. The full potential of PCCT systems will be unlocked when UHR spectral imaging becomes available.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
8
|
Moser LJ, Pitteloud J, Mergen V, Frey D, Nowak T, Distler O, Eberhard M, Alkadhi H. Bone Mineral Density Assessment Using Spectral Topograms From a Clinical Photon-Counting Detector CT System: A Phantom Evaluation. AJR Am J Roentgenol 2024; 222:e2330347. [PMID: 37937835 DOI: 10.2214/ajr.23.30347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Affiliation(s)
| | | | | | - Diana Frey
- University Hospital Zurich, Zurich, Switzerland
| | | | | | - Matthias Eberhard
- University Hospital Zurich, Zurich, Switzerland
- Spitäler Frutigen Meiringen Interlaken AG, Unterseen, Switzerland
| | | |
Collapse
|
9
|
Abstract
ABSTRACT Computed tomography (CT) images display anatomic structures across 3 dimensions and are highly quantitative; they are the reference standard for 3-dimensional geometric measurements and are used for 3-dimensional printing of anatomic models and custom implants, as well as for radiation therapy treatment planning. The pixel intensity in CT images represents the linear x-ray attenuation coefficient of the imaged materials after linearly scaling the coefficients into a quantity known as CT numbers that is conveyed in Hounsfield units. When measured with the same scanner model, acquisition, and reconstruction parameters, the mean CT number of a material is highly reproducible, and quantitative applications of CT scanning that rely on the measured CT number, such as for assessing bone mineral density or coronary artery calcification, are well established. However, the strong dependence of CT numbers on x-ray beam spectra limits quantitative applications and standardization from achieving robust widespread success. This article reviews several quantitative applications of CT and the challenges they face, and describes the benefits brought by photon-counting detector (PCD) CT technology. The discussed benefits of PCD-CT include that it is inherently multienergy, expands material decomposition capabilities, and improves spatial resolution and geometric quantification. Further, the utility of virtual monoenergetic images to standardize CT numbers is discussed, as virtual monoenergetic images can be the default image type in PCD-CT due to the full-time spectral nature of the technology.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| |
Collapse
|
10
|
Levi R, Garoli F, Battaglia M, Rizzo DAA, Mollura M, Savini G, Riva M, Tomei M, Ortolina A, Fornari M, Rohatgi S, Angelotti G, Savevski V, Mazziotti G, Barbieri R, Grimaldi M, Politi LS. CT-based radiomics can identify physiological modifications of bone structure related to subjects' age and sex. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01641-6. [PMID: 37147473 DOI: 10.1007/s11547-023-01641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. MATERIALS AND METHODS We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions. RESULTS The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years). CONCLUSION Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
Collapse
Affiliation(s)
- Riccardo Levi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Federico Garoli
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Massimiliano Battaglia
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Dario A A Rizzo
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Maximilliano Mollura
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Giovanni Savini
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Massimo Tomei
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Alessandro Ortolina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Maurizio Fornari
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Saurabh Rohatgi
- Department of Neuroradiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Giovanni Angelotti
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Metabolic Bone Diseases and Osteoporosis Section, Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Riccardo Barbieri
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | - Marco Grimaldi
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, 20090, Rozzano, Italy.
| |
Collapse
|
11
|
Hsieh SS, Budoff MJ. Estimating the accuracy of dual energy chest radiography for coronary calcium detection with lateral or anteroposterior orientations. Med Phys 2022; 49:5763-5772. [PMID: 35848231 PMCID: PMC9474689 DOI: 10.1002/mp.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Coronary artery calcium (CAC) scoring with CT has been studied as a risk stratification tool for cardiovascular disease. However, concerns remain from the radiation dose, economic expense, and incidental findings associated with this exam. Dual energy chest X-ray (DE CXR) has been proposed as an alternative, but validation of this technique remains limited. The purpose of this work was twofold: first, to estimate the sensitivity and specificity of DE CXR using simulation of patient datasets in a CAC screening cohort; second, to assess if sensitivity and specificity could be improved using a lateral instead of an anteroposterior (AP) orientation. METHODS We started from a cohort of 73 CAC scoring CT exams after exclusions for metal wires, data truncation, or with age outside 40-75 years. The fraction of CT CAC scores in the validation set of 0, 1-99, 100-299, and 300+ were 36, 25, 14, and 26%, respectively. CT datasets were decomposed on a voxel-by-voxel basis into mixtures of water and calcium according to CT number. DE CXR images were simulated using polyenergetic forward projection with scatter estimated from Monte Carlo. We assumed a technique of 60 and 120 kVp for the dual energy acquisition. The tube current was scaled such that the estimated radiation dose from DE CXR was 10 times less than CAC scoring CT. Patient motion was not simulated. Two readers read the validation set in a blinded, randomized fashion, and estimated the amount of CAC in each DE CXR image using a semiquantitative 4-point scale. Although patients present on a spectrum of CAC severity, in the primary analysis, sensitivity and specificity were calculated by dichotomizing patients into two categories of CT CAC (Agatston) scores of either 0-99 or 100+. RESULTS From the lateral orientation, average sensitivity between two readers was 69% (range, 69-69%), specificity was 85% (range, 84-86%), and area under the curve (AUC) was 0.81 (range, 0.80-0.81). From the AP orientation, average sensitivity was 35% (range, 31-38%), average specificity was 70% (range, 66-73%), and AUC was 0.54 (range, 0.53-0.55). Reader DE CXR scores agreed within 1 point of the 4-point scale on 97% of ratings from the lateral orientation and 80% from the AP orientation. From the lateral orientation, AUC increased when considering higher CT CAC score thresholds as disease positive; for thresholds of 1+, 300+, and 1000+, average AUC was 0.72, 0.81, and 0.92, respectively. From the AP orientation, AUC was 0.57, 0.55, and 0.61, respectively. CONCLUSIONS DE CXR for CAC scoring may have higher diagnostic accuracy when acquired from the lateral orientation. The sensitivity and specificity of lateral DE CXR, when combined with its modest cost and radiation dose, suggest a possible role for this technique in screening coronary calcium in lower risk individuals. These estimates of diagnostic accuracy are derived from simulation of patient datasets and have not been corroborated with experimental or clinical images.
Collapse
Affiliation(s)
- Scott S. Hsieh
- Department of Radiology, Mayo Clinic, Rochester MN 55905
| | - Matthew J. Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA, Torrance CA 90502
| |
Collapse
|
12
|
Virtual Noncontrast Imaging of the Liver Using Photon-Counting Detector Computed Tomography: A Systematic Phantom and Patient Study. Invest Radiol 2022; 57:488-493. [PMID: 35136003 DOI: 10.1097/rli.0000000000000860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to assess the accuracy of virtual noncontrast (VNC) images of the liver in a phantom and patients using dual-source photon-counting detector computed tomography (PCD-CT). MATERIALS AND METHODS An anthropomorphic abdominal phantom with a liver insert containing liver parenchyma (1.4 mgI/mL) and 19 liver lesions (iodine content 0-5 mgI/mL) was imaged on a clinical dual-source PCD-CT (tube voltage 120 kV) and in the dual-energy mode on a dual-source energy-integrating detector (EID) CT (tube voltage combinations, 80/Sn150 kV, 90/Sn150 kV, and 100/Sn150 kV). Rings of fat-equivalent material were added to the phantom to emulate 3 sizes (small, medium, large). Each setup was imaged at 3 different radiation doses (volume CT dose index: 5, 10, and 15 mGy). Virtual noncontrast images were reconstructed and CT attenuation was measured in each lesion and liver parenchyma. The absolute error of CT attenuation (VNCerror) was calculated using the phantom specifications as reference. In addition, 15 patients with hypodense liver lesions who were clinically scanned on PCD-CT were retrospectively included. Attenuation values in lesions and liver parenchyma in VNC images reconstructed from portal venous phase CT were compared with true noncontrast images. Statistical analysis included analysis of variance with post hoc t tests and generalized linear models to assess the impact of various variables (dose, patient size, base material, iodine content, and scanner/scan mode) on quantification accuracy. RESULTS In the phantom, the overall mean VNCerror for PCD-CT was 4.1 ± 3.9 HU. The overall mean VNCerror for EID-CT was 7.5 ± 5, 6.3 ± 4.7, and 6.7 ± 4.8 HU for 80/Sn150 kV, 90/Sn150 kV, and 100/Sn150 kV, respectively, with the VNCerror of EID-CT being significantly higher at all tube voltage settings (P < 0.001), even after adjusting for dose, size, iodine content of the lesion, and attenuation of base material. For PCD-CT, a smaller phantom size was associated with higher quantification accuracy (P = 0.007-0.046), whereas radiation dose did not impact accuracy (P > 0.126). For EID-CT, but not for PCD-CT, VNCerror increased with lesion iodine content (P < 0.001). In patients, there was no difference in attenuation measured on true noncontrast and VNC images (P = 0.093), with a mean VNCerror of 3.7 ± 2.2 HU. CONCLUSIONS Photon-counting detector CT allows for the reconstruction of VNC images of the liver both in a phantom and in patients with accurate attenuation values, being independent of dose, attenuation of base material, and liver iodine content.
Collapse
|