1
|
Chauvet G, Cheddad El Aouni M, Magro E, Sabardu O, Ben Salem D, Gentric JC, Ognard J. Diagnostic Accuracy of Non-Contrast-Enhanced Time-Resolved MR Angiography to Assess Angioarchitectural Classification Features of Brain Arteriovenous Malformations. Diagnostics (Basel) 2024; 14:1656. [PMID: 39125532 PMCID: PMC11311491 DOI: 10.3390/diagnostics14151656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study aims to assess the diagnostic accuracy of non-contrast-enhanced 4D MR angiography (NCE-4D-MRA) compared to contrast-enhanced 4D MR angiography (CE-4D-MRA) for the detection and angioarchitectural characterisation of brain arteriovenous malformations (bAVMs). Utilising a retrospective design, we examined 54 MRA pairs from 43 patients with bAVMs, using digital subtraction angiography (DSA) as the reference standard. Both NCE-4D-MRA and CE-4D-MRA were performed using a 3-T MR imaging system. The primary objectives were to evaluate the diagnostic performance of NCE-4D-MRA against CE-4D-MRA and DSA and to assess concordance between imaging modalities in grading bAVMs according to four main scales: Spetzler-Martin, Buffalo, AVM embocure score (AVMES), and R2eDAVM. Our results demonstrated that NCE-4D-MRA had a higher accuracy and specificity compared to CE-4D-MRA (0.85 vs. 0.83 and 95% vs. 85%, respectively) and similar agreement, with DSA detecting shunts in bAVMs or residuals. Concordance in grading bAVMs was substantial between NCE-4D-MRA and DSA, particularly for the Spetzler-Martin and Buffalo scales, with CE-4D-MRA showing slightly higher kappa values for interobserver agreement. The study highlights the potential of NCE-4D-MRA as a diagnostic tool for bAVMs, offering comparable accuracy to CE-4D-MRA while avoiding the risks associated with gadolinium-based contrast agents. The safety profile of imaging techniques is a significant concern in the long-term follow up of bAVMs, and further prospective research should focus on NCE-4D-MRA protocol improvement for clinical use.
Collapse
Affiliation(s)
- Grégoire Chauvet
- Department of Radiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France;
| | - Mourad Cheddad El Aouni
- Department of Interventional Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France; (M.C.E.A.); (J.-C.G.)
| | - Elsa Magro
- Department of Neurosurgery, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France;
- Inserm, UMR 1101 (Laboratoire de Traitement de l’Information Médicale-LaTIM), Université de Bretagne Occidentale, 29238 Brest, France;
| | - Ophélie Sabardu
- Service d’Imagerie Médicale, Hôpital d’Instruction des Armées Legouest, rue des Frères-Lacretelle, 57070 Metz, France;
| | - Douraied Ben Salem
- Inserm, UMR 1101 (Laboratoire de Traitement de l’Information Médicale-LaTIM), Université de Bretagne Occidentale, 29238 Brest, France;
- Department of Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France
| | - Jean-Christophe Gentric
- Department of Interventional Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France; (M.C.E.A.); (J.-C.G.)
- Inserm, UMR 1304 (GETBO), Western Brittany Thrombosis Study Group, Université de Bretagne Occidentale, 29238 Brest, France
| | - Julien Ognard
- Department of Interventional Neuroradiology, Hôpital Cavale Blanche, Brest University Hospital, 29200 Brest, France; (M.C.E.A.); (J.-C.G.)
- Inserm, UMR 1101 (Laboratoire de Traitement de l’Information Médicale-LaTIM), Université de Bretagne Occidentale, 29238 Brest, France;
| |
Collapse
|
2
|
Dinçer A, Özduman K. Optimum choice of MRA-sequences for Gamma Knife planning in AVM. Br J Neurosurg 2023; 37:242-243. [PMID: 34165013 DOI: 10.1080/02688697.2021.1916435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alp Dinçer
- Professor of Radiology Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Radiology, Istanbul, Turkey
| | - Koray Özduman
- Professor of Neurosurgery Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
3
|
Takamatsu S, Suzuki K, Murakami Y, Nomura K, Yamamoto J, Nishizawa S. Usefulness of arterial spin labeling in the evaluation for dural arteriovenous fistula of the craniocervical junction. Radiol Case Rep 2021; 16:1655-1659. [PMID: 34007378 PMCID: PMC8111452 DOI: 10.1016/j.radcr.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022] Open
Abstract
In the diagnosis of an intracranial dural arteriovenous fistula (DAVF), arterial spin labeling (ASL), a sequence of magnetic resonance imaging (MRI) to depict high-blood-flow intracranial lesions, has been reported as a useful and noninvasive tool, not only to predict the presence of cortical venous drainage and draining veins, but also to confirm persistent obliteration after treatment. However, such utility of ASL has not been reported in DAVF of the craniocervical junction (CCJDAVF) because of the rarity of this disease and uncertainty in the acquisition of precise images. We report a case of CCJDAVF presenting with myelopathy. Preoperative ASL images showed an abnormal high-intensity signal in the craniocervical junction, consistent with the anterior spinal vein and draining veins, which were also identified by digital subtraction angiography. After successful surgical treatment for the disease, MRI and 4-dimensional computed tomography angiography (4DCTA) confirmed complete disappearance of CCJDAVF. The ASL images also showed no abnormal intensity signal. The patient was followed-up using ASL, and no recurrence of high-intensity signal was observed. As repetitive image examination is mandatory in the follow-up of a patient with DAVF to exclude recurrence, ASL is highly beneficial because of the unnecessity of an exogenous contrast medium and high credibility to depict the disease. The craniocervical junction may be out of the field of view in routine MRI. Special attention must be paid to setting the field of view and post labeling delay (PLD) to obtain precise images of ASL in CCJDAVF.
Collapse
Affiliation(s)
- Seishiro Takamatsu
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.,Seirei Center for Health Promotion and Preventive Medicine, Hamamatsu, Shizuoka, Japan.,Center for Brain and Spine Surgery, Aoyama General Hospital, Toyokawa, Aichi, Japan
| | - Kohei Suzuki
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Yu Murakami
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kei Nomura
- Center for Brain and Spine Surgery, Aoyama General Hospital, Toyokawa, Aichi, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Martín-Noguerol T, Concepción-Aramendia L, Lim CT, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Conventional and advanced MRI evaluation of brain vascular malformations. J Neuroimaging 2021; 31:428-445. [PMID: 33856735 DOI: 10.1111/jon.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/14/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022] Open
Abstract
Vascular malformations (VMs) of the central nervous system (CNS) include a wide range of pathological conditions related to intra and extracranial vessel abnormalities. Although some VMs show typical neuroimaging features, other VMs share and overlap pathological and neuroimaging features that hinder an accurate differentiation between them. Hence, it is not uncommon to misclassify different types of VMs under the general heading of arteriovenous malformations. Thorough knowledge of the imaging findings of each type of VM is mandatory to avoid these inaccuracies. Conventional MRI sequences, including MR angiography, have allowed the evaluation of CNS VMs without using ionizing radiation. Newer MRI techniques, such as susceptibility-weighted imaging, black blood sequences, arterial spin labeling, and 4D flow imaging, have an added value of providing physiopathological data in real time regarding the hemodynamics of VMs. Beyond MR images, new insights using 3D printed models are being incorporated as part of the armamentarium for a noninvasive evaluation of VMs. In this paper, we briefly review the pathophysiology of CNS VMs, focusing on the MRI findings that may be helpful to differentiate them. We discuss the role of each conventional and advanced MRI sequence for VMs assessment and provide some insights about the value of structured reports of 3D printing to evaluate VMs.
Collapse
Affiliation(s)
| | | | - Cc Tchoyoson Lim
- Neuroradiology Department, National Neuroscience Institute and Duke-NUS Medical School, Singapore
| | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain
| |
Collapse
|
5
|
Rojas-Villabona A, Pizzini FB, Solbach T, Sokolska M, Ricciardi G, Lemonis C, DeVita E, Suzuki Y, van Osch MJP, Foroni RI, Longhi M, Montemezzi S, Atkinson D, Kitchen N, Nicolato A, Golay X, Jäger HR. Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations? AJNR Am J Neuroradiol 2021; 42:671-678. [PMID: 33541896 DOI: 10.3174/ajnr.a6990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/21/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Intra-arterial DSA has been traditionally used for confirmation of cure following gamma knife radiosurgery for AVMs. Our aim was to evaluate whether 4D arterial spin-labeling MRA and contrast-enhanced time-resolved MRA in combination can be an alternative to DSA for confirmation of AVM obliteration following gamma knife radiosurgery. MATERIALS AND METHODS In this prospective study, 30 patients undergoing DSA for confirmation of obliteration following gamma knife radiosurgery for AVMs (criterion standard) also underwent MRA, including arterial spin-labeling MRA and contrast-enhanced time-resolved MRA. One dataset was technically unsatisfactory, and the case was excluded. The DSA and MRA datasets of 29 patients were independently and blindly evaluated by 2 observers regarding the presence/absence of residual AVMs. RESULTS The mean time between gamma knife radiosurgery and follow-up DSA/MRA was 53 months (95% CI, 42-64 months; range, 22-168 months). MRA total scanning time was 9 minutes and 17 seconds. Residual AVMs were detected on DSA in 9 subjects (obliteration rate = 69%). All residual AVMs were detected on at least 1 MRA sequence. Arterial spin-labeling MRA and contrast-enhanced time-resolved MRA showed excellent specificity and positive predictive values individually (100%). However, their sensitivity and negative predictive values were suboptimal due to 1 false-negative with arterial spin-labeling MRA and 2 with contrast-enhanced time-resolved MRA (sensitivity = 88% and 77%, negative predictive values = 95% and 90%, respectively). Both sensitivity and negative predictive values increased to 100% if a composite assessment of both MRA sequences was performed. Diagnostic accuracy (receiver operating characteristic) and agreement (κ) are maximized using arterial spin-labeling MRA and contrast-enhanced time-resolved MRA in combination (area under receiver operating characteristic curve = 1, P < .001; κ = 1, P < .001, respectively). CONCLUSIONS Combining arterial spin-labeling MRA with contrast-enhanced time-resolved MRA holds promise as an alternative to DSA for confirmation of obliteration following gamma knife radiosurgery for brain AVMs, having provided 100% sensitivity and specificity in the study. Their combined use also enables reliable characterization of residual lesions.
Collapse
Affiliation(s)
- A Rojas-Villabona
- From The Gamma Knife Centre at Queen Square (A.R.-V.) .,Department of Neurosurgery (A.R.-V.), Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - F B Pizzini
- Department of Radiology (F.B.P., R.I.F.), Department of Diagnostic and Public Health, Verona University, Verona, Italy
| | - T Solbach
- The Lysholm Department of Neuroradiology (T.S., H.R.J.)
| | - M Sokolska
- Department of Medical Physics and Bioengineering (M.S.).,Neuroradiological Academic Unit (M.S., X.G., H.R.J.)
| | - G Ricciardi
- Neuroradiology Unit (G.R., C.L.), Department of Diagnostic and Pathology, University Hospital of Verona, Verona, Italy
| | - C Lemonis
- Neuroradiology Unit (G.R., C.L.), Department of Diagnostic and Pathology, University Hospital of Verona, Verona, Italy
| | - E DeVita
- School of Biomedical Engineering and Imaging Sciences (E.D.V.), King's College London, London, UK
| | - Y Suzuki
- Wellcome Centre for Integrative Neuroimaging (Y.S.), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M J P van Osch
- C.J. Gorter Center for High Field MRI (M.J.P.v.O.), Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - R I Foroni
- Department of Radiology (F.B.P., R.I.F.), Department of Diagnostic and Public Health, Verona University, Verona, Italy
| | - M Longhi
- Department of Neuroscience (M.L., A.N.)
| | | | - D Atkinson
- Department of Brain Repair and Rehabilitation, Institute of Neurology and Centre for Medical Imaging (D.A.), University College London, London, UK
| | - N Kitchen
- Department of Neurosurgery (N.K.), National Hospital for Neurology and Neurosurgery, London, UK
| | | | - X Golay
- Neuroradiological Academic Unit (M.S., X.G., H.R.J.)
| | - H R Jäger
- The Lysholm Department of Neuroradiology (T.S., H.R.J.).,Neuroradiological Academic Unit (M.S., X.G., H.R.J.)
| |
Collapse
|
6
|
Ramachandran S, Mukherjee D, Delf J, Bown MJ, Kandiyil N. A comparison of arterial spin labelling with catheter angiography in evaluating arteriovenous malformations: a systematic review. Br J Radiol 2020; 93:20190830. [PMID: 32208976 PMCID: PMC10993222 DOI: 10.1259/bjr.20190830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To compare the performance of arterial spin labelling (ASL) in evaluating arteriovenous malformations (AVMs) against the current gold standard of catheter angiography. METHODS We systematically reviewed the published literature using EMBASE and Medline. We included studies that compared ASL to catheter angiography in the assessment of AVMs in three outcome domains: detection, angioarchitectural and haemodynamic features. RESULTS From 314 unique citations, 19 studies representing 289 patients with intracranial AVMs met our inclusion criteria. We did not pool data due to marked heterogeneity in study outcome measures. Seven studies showed high diagnostic performance of ASL in identifying arterial feeders, with sensitivity ranging from 84.6 to 100% and specificity ranging from 93.3 to 100%. Six studies showed strong ability in detecting arteriovenous shunting, with sensitivity ranging from 91.7 to 100% and specificity ranging from 90 to 100%. Seven studies demonstrated that ASL could identify nidal location and size as well as catheter angiography, while five studies showed relatively poorer performance in delineating venous drainage. Two studies showed 100% sensitivity of ASL in the identification of residual or obliterated AVMs following stereotactic radiosurgery. CONCLUSIONS Despite limitations in the current evidence base and technical challenges, this review suggests that ASL has a promising role in the work-up and post-treatment follow-up of AVMs. Larger scale prospective studies assessing the diagnostic performance of ASL are warranted. ADVANCES IN KNOWLEDGE ASL demonstrates overall validity in the evaluation of intracranial AVMs.
Collapse
Affiliation(s)
- Sanjeev Ramachandran
- University Hospitals of Leicester NHS Trust,
Leicester, United Kingdom
- University of Leicester,
Leicester, United Kingdom
| | - Deyashini Mukherjee
- University Hospitals of Leicester NHS Trust,
Leicester, United Kingdom
- University of Leicester,
Leicester, United Kingdom
| | - Jonathan Delf
- University Hospitals of Leicester NHS Trust,
Leicester, United Kingdom
| | - Matthew James Bown
- University Hospitals of Leicester NHS Trust,
Leicester, United Kingdom
- University of Leicester,
Leicester, United Kingdom
| | - Neghal Kandiyil
- University Hospitals of Leicester NHS Trust,
Leicester, United Kingdom
- University of Leicester,
Leicester, United Kingdom
| |
Collapse
|
7
|
Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation. Neuroradiology 2020; 62:455-461. [PMID: 31898767 DOI: 10.1007/s00234-019-02345-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE MR angiography using the silent MR angiography algorithm (silent MRA), which combines arterial spin labeling and an ultrashort time echo, has not been used for the evaluation of cerebral arteriovenous malformations (CAVMs). We aimed to determine the usefulness of silent MRA for the evaluation of CAVMs. METHODS Twenty-nine CAVMs of 28 consecutive patients diagnosed by 4D CT angiography or digital subtraction angiography, who underwent both time-of-flight (TOF) MRA and silent MRA, were enrolled. Two observers independently assessed the TOF-MRA and silent MRA images of CAVMs. Micro AVM was defined as AVM with a nidus diameter less than 10 mm. The detection rate, visualization of the components, and accuracy of Spetzler-Martin grade were evaluated with statistical software R. RESULTS For all 29 CAVMs, 23 (79%) lesions were detected for TOF-MRA and all for silent MRA. Of 10 micro AVMs, only 4 (40%) lesions were detectable on TOF-MRA and all (100%) on silent MRA. The visibility of the nidus and drainer was significantly better for silent MRA than TOF-MRA (p < 0.001), while there was no significant difference in the feeder between the two sequences. The accuracy rates of the Spetzler-Martin grade for the TOF and silent MRA were 38% (11/29) and 79.3% (23/29), respectively (p < 0.001). CONCLUSIONS Silent MRA is useful for evaluating CAVM components and detecting micro AVM.
Collapse
|
8
|
Biondetti E, Rojas-Villabona A, Sokolska M, Pizzini FB, Jäger HR, Thomas DL, Shmueli K. Investigating the oxygenation of brain arteriovenous malformations using quantitative susceptibility mapping. Neuroimage 2019; 199:440-453. [DOI: 10.1016/j.neuroimage.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
|
9
|
Arterial-spin labeling MRI identifies residual cerebral arteriovenous malformation following stereotactic radiosurgery treatment. J Neuroradiol 2019; 47:13-19. [PMID: 30658138 DOI: 10.1016/j.neurad.2018.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Brain arteriovenous malformation (AVM) treatment by stereotactic radiosurgery (SRS) is effective, but AVM obliteration following SRS may take two years or longer. MRI with arterial-spin labeling (ASL) may detect brain AVMs with high sensitivity. We determined whether brain MRI with ASL may accurately detect residual AVM following SRS treatment. MATERIALS AND METHODS We performed a retrospective cohort study of patients who underwent brain AVM evaluation by DSA between June 2010 and June 2015. Inclusion criteria were: (1) AVM treatment by SRS, (2) follow-up MRI with ASL at least 30 months after SRS, (3) DSA within 3 months of the follow-up MRI with ASL, and (4) no intervening AVM treatment between the MRI and DSA. Four neuroradiologists blindly and independently reviewed follow-up MRIs. Primary outcome measure was residual AVM indicated by abnormal venous ASL signal. RESULTS 15 patients (12 females, mean age 29 years) met inclusion criteria. There were three posterior fossa AVMs and 12 supratentorial AVMs. Spetzler-Martin (SM) Grades were: SM1 (8%), SM2 (33%), SM3 (17%), SM4 (25%), and SM5 (17%). DSA demonstrated residual AVM in 10 patients. The pooled sensitivity, specificity, positive predictive value, and negative predictive value of venous ASL signal for predicting residual AVM were 100% (95% CI: 0.9-1.0), 95% (95% CI: 0.7-1.0), 98% (95% CI: 0.9-1.0), and 100% (95% CI: 0.8-1.0), respectively. High inter-reader agreement as found by Fleiss' Kappa analysis (k = 0.92; 95% CI: 0.8-1.0; P < 0.0001). CONCLUSIONS ASL is highly sensitive and specific in the detection of residual cerebral AVM following SRS treatment.
Collapse
|
10
|
Non contrast, Pseudo-Continuous Arterial Spin Labeling and Accelerated 3-Dimensional Radial Acquisition Intracranial 3-Dimensional Magnetic Resonance Angiography for the Detection and Classification of Intracranial Arteriovenous Shunts. Invest Radiol 2018; 53:80-86. [PMID: 28937545 DOI: 10.1097/rli.0000000000000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study was to assess the sensitivity and specificity of pseudo-continuous arterial spin labeling (PCASL) magnetic resonance angiography (MRA) with 3-dimensional (3D) radial acquisition for the detection of intracranial arteriovenous (AV) shunts. MATERIALS AND METHODS A total of 32 patients who underwent PCASL-MRA, clinical magnetic resonance imaging (MRI)/MRA exam, and digital subtraction angiography (DSA) were included in this retrospective analysis. Twelve patients presented with AV shunts. Among these were 8 patients with AV malformations (AVM) and 4 patients with AV fistulas (AVF). The clinical MRI/MRA included 3D time-of-flight MRA in all cases and time-resolved, contrast-enhanced MRA in 9 cases (6 cases with AV shunting). Research MRI and clinical MRI were independently evaluated by 2 neuroradiologists blinded to patient history. A third radiologist evaluated DSA imaging. A diagnostic confidence score was used for the presence of abnormalities associated with AV shunting (1-5). The AVMs were characterized using the Spetzler-Martin scale, whereas AVFs were characterized using the Borden classification. κ Statistics were applied to assess intermodality agreement. RESULTS Compared with clinical MRA, noncontrast PCASL-MRA with 3D radial acquisition yielded excellent sensitivity and specificity for the detection of intracranial AV shunts (reader 1: 100%/100%, clinical MRA: 91.7%, 94.4%; reader 2: 91.7%/100%, clinical MRA: 91.7%/100%). Diagnostic confidence was 4.8/4.66 with PCASL-MRA and 4.25/4.66 with clinical MRA. For AVM characterization with PCASL-MRA, intermodality agreement with DSA showed κ values of 0.43 and 0.6 for readers 1 and 2, respectively. For AVF characterization, intermodality agreement showed κ values of 0.56 for both readers. CONCLUSION Noncontrast PCASL-MRA with 3D radial acquisition is a potential tool for the detection and characterization of intracranial AV shunts with a sensitivity and specificity equivalent or higher than routine clinical MRA.
Collapse
|
11
|
Iv M, Choudhri O, Dodd RL, Vasanawala SS, Alley MT, Moseley M, Holdsworth SJ, Grant G, Cheshier S, Yeom KW. High-resolution 3D volumetric contrast-enhanced MR angiography with a blood pool agent (ferumoxytol) for diagnostic evaluation of pediatric brain arteriovenous malformations. J Neurosurg Pediatr 2018; 22:251-260. [PMID: 29882734 DOI: 10.3171/2018.3.peds17723] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with brain arteriovenous malformations (AVMs) often require repeat imaging with MRI or MR angiography (MRA), CT angiography (CTA), and digital subtraction angiography (DSA). The ideal imaging modality provides excellent vascular visualization without incurring added risks, such as radiation exposure. The purpose of this study is to evaluate the performance of ferumoxytol-enhanced MRA using a high-resolution 3D volumetric sequence (fe-SPGR) for visualizing and grading pediatric brain AVMs in comparison with CTA and DSA, which is the current imaging gold standard. METHODS In this retrospective cohort study, 21 patients with AVMs evaluated by fe-SPGR, CTA, and DSA between April 2014 and August 2017 were included. Two experienced raters graded AVMs using Spetzler-Martin criteria on all imaging studies. Lesion conspicuity (LC) and diagnostic confidence (DC) were assessed using a 5-point Likert scale, and interrater agreement was determined. The Kruskal-Wallis test was performed to assess the raters' grades and scores of LC and DC, with subsequent post hoc pairwise comparisons to assess for statistically significant differences between pairs of groups at p < 0.05. RESULTS Assigned Spetzler-Martin grades for AVMs on DSA, fe-SPGR, and CTA were not significantly different (p = 0.991). LC and DC scores were higher with fe-SPGR than with CTA (p < 0.05). A significant difference in LC scores was found between CTA and fe-SPGR (p < 0.001) and CTA and DSA (p < 0.001) but not between fe-SPGR and DSA (p = 0.146). A significant difference in DC scores was found among DSA, fe-SPGR, and CTA (p < 0.001) and between all pairs of the groups (p < 0.05). Interrater agreement was good to very good for all image groups (κ = 0.77-1.0, p < 0.001). CONCLUSIONS Fe-SPGR performed robustly in the diagnostic evaluation of brain AVMs, with improved visual depiction of AVMs compared with CTA and comparable Spetzler-Martin grading relative to CTA and DSA.
Collapse
Affiliation(s)
- Michael Iv
- 1Department of Radiology, Stanford University Medical Center, Stanford
| | - Omar Choudhri
- 1Department of Radiology, Stanford University Medical Center, Stanford
| | - Robert L Dodd
- 1Department of Radiology, Stanford University Medical Center, Stanford
| | - Shreyas S Vasanawala
- 1Department of Radiology, Stanford University Medical Center, Stanford.,2Department of Radiology, Lucile Packard Children's Hospital, Palo Alto
| | - Marcus T Alley
- 3Richard M. Lucas Center for Imaging, Stanford University, Stanford; and
| | - Michael Moseley
- 3Richard M. Lucas Center for Imaging, Stanford University, Stanford; and
| | | | - Gerald Grant
- 4Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Palo Alto, California
| | - Samuel Cheshier
- 4Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Palo Alto, California
| | - Kristen W Yeom
- 2Department of Radiology, Lucile Packard Children's Hospital, Palo Alto
| |
Collapse
|
12
|
Time-of-Arrival Parametric Maps and Virtual Bolus Images Derived From Contrast-Enhanced Time-Resolved Radial Magnetic Resonance Angiography Improve the Display of Brain Arteriovenous Malformation Vascular Anatomy. Invest Radiol 2017; 51:706-713. [PMID: 27760058 DOI: 10.1097/rli.0000000000000288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Time-of-arrival (TOA) maps can be derived from high-resolution 4-dimensional (4D) contrast-enhanced magnetic resonance angiography (MRA) data sets to provide a quantitative description of contrast material arrival time in each voxel. This information can further be processed to create a compressed time evolution curve that virtually shortens the contrast bolus (virtual bolus [VB]). The purpose of this project was to determine whether TOA-enhanced 4D MRA and/or VB imaging improve the display of contrast kinetics in patients with vascular disease. METHODS High-resolution whole-brain contrast-enhanced 4D MRA examinations with 1.2-second temporal reconstruction were acquired by using radial acquisition and highly constrained projection reconstruction (radial 4D contrast-enhanced HYPRFlow, abbreviated as HFMRA in this article) in 10 patients (8 patients with arteriovenous malformations [AVM], 1 patient with an arteriovenous fistula, and 1 patient with a high-grade intracranial stenosis). The TOA for each voxel was defined as the time point when the signal intensity reached 20% of its maximum. In the first method, TOA maps were generated, color-encoded, and then multiplied with the time-resolved contrast-enhanced MRA images at each time frame to form new 4D MRA images (TOA-enhanced HFMRA), which contains the contrast arrival times with defined color encoding. In the second method, each time frame was weighted by a Gaussian distribution in the time domain to form a virtual 4D bolus map. This 4D bolus map was then color-coded and multiplied with the HFMRA images to form a digital subtraction angiography (DSA)-like VB, where at each time frame, only vessels with certain TOA values within the defined bolus length appear. HFMRA, TOA maps, and VB images were scored qualitatively with regard to delineation of arteries, veins, and nidus, as well as artifacts. Furthermore, diagnostic confidence and arteriovenous overlap were evaluated and compared between techniques. A comparison with DSA was performed where DSA served as the reference standard in terms of number of arterial feeders, draining veins, and Spetzler-Martin score of AVMs. In addition, TOA maps were evaluated quantitatively. RESULTS Overall, diagnostic confidence score of TOA was significantly higher compared with that of HFMRA (P = 0.03). Virtual bolus showed significantly higher scores for overall diagnostic confidence (P = 0.02) and reduced arteriovenous overlap (0.01) compared with HFMRA. Furthermore, VB-reduced arteriovenous overlap scores were significantly higher compared with TOA (P = 0.04). Agreement regarding AVM draining veins was lower between DSA and HFMRA (κ = 0.3) compared with TOA and VB (κ = 0.56). Agreement regarding Spetzler-Martin score was lower between DSA and HFMRA (κ = 0.56) compared with TOA and VB (κ = 0.74). CONCLUSIONS TOA-enhanced HFMRA provides serial images and time of arrival maps in one inclusive display. In this study, TOA mapping combined with Virtual Bolus imaging improved diagnostic confidence in AVM patients and facilitated arteriovenous separation. The VB method further reduced overlap of arterial and venous structures.
Collapse
|
13
|
Kodera T, Arai Y, Arishima H, Higashino Y, Isozaki M, Tsunetoshi K, Matsuda K, Kitai R, Shimizu K, Kosaka N, Yamamoto T, Shioura H, Kimura H, Kikuta KI. Evaluation of obliteration of arteriovenous malformations after stereotactic radiosurgery with arterial spin labeling MR imaging. Br J Neurosurg 2017; 31:641-647. [PMID: 28830253 DOI: 10.1080/02688697.2017.1365818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Complete obliteration of treated arteriovenous malformations (AVMs) can be diagnosed only by confirming the disappearance of arterio-venous (A-V) shunts with invasive catheter angiography. The authors evaluated whether non-invasive arterial spin labeling (ASL) magnetic resonance (MR) imaging can be used to diagnose the obliteration of AVMs facilitate the diagnosis of AVM obliteration after treatment with stereotactic radiosurgery (SRS). MATERIAL AND METHODS Seven patients with a cerebral AVM treated by SRS were followed up with ASL images taken with a 3T-MR unit, and received digital subtraction angiography (DSA) after the AVM had disappeared on ASL images. Three patients among the seven received DSA also after the postradiosurgical AVM had disappeared on conventional MR images but A-V shunt was residual on ASL images. Four patients among the seven received contrast-enhanced (CE) MR imaging around the same period as DSA. RESULTS ASL images could visualize postradiosurgical residual A-V shunts clearly. In all seven patients, DSA after the disappearance of A-V shunts on ASL images demonstrated no evidence of A-V shunts. In all three patients, DSA after the AVM had disappeared on conventional MR images but not on ASL images demonstrated residual A-V shunt. CE MR findings of AVMs treated by SRS did not correspond with DSA findings in three out of four patients. CONCLUSIONS Findings of radiosurgically treated AVMs on ASL images corresponded with those on DSA. The results of this study suggest that ASL imaging can be utilized to follow up AVMs after SRS and to decide their obliteration facilitate to decide the precise timing of catheter angiography for the final diagnosis of AVM obliteration after SRS.
Collapse
Affiliation(s)
- Toshiaki Kodera
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Yoshikazu Arai
- b Department of Neurosurgery , Municipal Tsuruga Hospital , Tsuruga , Fukui, Japan
| | - Hidetaka Arishima
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Yoshifumi Higashino
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Makoto Isozaki
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Kenzo Tsunetoshi
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Ken Matsuda
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Ryuhei Kitai
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| | - Kazuhiro Shimizu
- c Department of Radiology, Faculty of Medical Sciences , University of Fukui , Eiheiji , Fukui , Japan
| | - Nobuyuki Kosaka
- c Department of Radiology, Faculty of Medical Sciences , University of Fukui , Eiheiji , Fukui , Japan
| | - Tatsuya Yamamoto
- c Department of Radiology, Faculty of Medical Sciences , University of Fukui , Eiheiji , Fukui , Japan
| | - Hiroki Shioura
- c Department of Radiology, Faculty of Medical Sciences , University of Fukui , Eiheiji , Fukui , Japan
| | - Hirohiko Kimura
- c Department of Radiology, Faculty of Medical Sciences , University of Fukui , Eiheiji , Fukui , Japan
| | - Ken-Ichiro Kikuta
- a Department of Neurosurgery , Faculty of Medical Sciences, University of Fukui , Eiheiji , Fukui , Japan
| |
Collapse
|
14
|
Lang S, Gölitz P, Struffert T, Rösch J, Rössler K, Kowarschik M, Strother C, Doerfler A. 4D DSA for Dynamic Visualization of Cerebral Vasculature: A Single-Center Experience in 26 Cases. AJNR Am J Neuroradiol 2017; 38:1169-1176. [PMID: 28408632 DOI: 10.3174/ajnr.a5161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D DSA allows acquisition of time-resolved 3D reconstructions of cerebral vessels by using C-arm conebeam CT systems. The aim of our study was to evaluate this new method by qualitative and quantitative means. MATERIALS AND METHODS 2D and 4D DSA datasets were acquired in patients presenting with AVMs, dural arteriovenous fistulas, and cerebral aneurysms. 4D DSA was compared with 2D DSA in a consensus reading of qualitative and quantitative parameters of AVMs (eg, location, feeder, associated aneurysms, nidus size, drainage, Martin-Spetzler Score), dural arteriovenous fistulas (eg, fistulous point, main feeder, diameter of the main feeder, drainage), and cerebral aneurysms (location, neck configuration, aneurysmal size). Identifiability of perforators and diameters of the injection vessel (ICA, vertebral artery) were analyzed in 2D and 4D DSA. Correlation coefficients and a paired t test were calculated for quantitative parameters. The effective patient dose of the 4D DSA protocol was evaluated with an anthropomorphic phantom. RESULTS In 26 patients, datasets were acquired successfully (AVM = 10, cerebral aneurysm = 10, dural arteriovenous fistula = 6). Qualitative and quantitative evaluations of 4D DSA in AVMs (nidus size: r = 0.99, P = .001), dural arteriovenous fistulas (diameter of the main feeder: r = 0.954, P = .03), and cerebral aneurysms (aneurysmal size: r = 1, P = .001) revealed nearly complete accordance with 2D DSA. Perforators were comparably visualized with 4D DSA. Measurement of the diameter of the injection vessel in 4D DSA was equivalent to that in 2D DSA (P = .039). The effective patient dose of 4D DSA was 1.2 mSv. CONCLUSIONS 4D DSA is feasible for imaging of AVMs, dural arteriovenous fistulas, and cerebral aneurysms. 4D DSA offers reliable visualization of the cerebral vasculature and may improve the understanding and treatment of AVMs and dural arteriovenous fistulas. The number of 2D DSA acquisitions required for an examination may be reduced through 4D DSA.
Collapse
Affiliation(s)
- S Lang
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - P Gölitz
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - T Struffert
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - J Rösch
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| | - K Rössler
- Neurosurgery (K.R.), University of Erlangen-Nuremberg, Erlangen, Germany
| | - M Kowarschik
- Angiography & Interventional X-Ray Systems (M.K.), Siemens Healthcare GmbH, Forchheim, Germany
| | - C Strother
- Department of Radiology (C.S.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - A Doerfler
- From the Departments of Neuroradiology (S.L., P.G., T.S., J.R., A.D.)
| |
Collapse
|
15
|
Usefulness of 3-Tesla magnetic resonance arterial spin-labeled imaging for diagnosis of cranial dural arteriovenous fistula. J Neurol Sci 2016; 372:428-432. [PMID: 27842984 DOI: 10.1016/j.jns.2016.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Conventional digital subtraction angiography (DSA) has been a useful tool for the diagnosis of cranial dural arteriovenous fistula (cDAVF). In most patients with cDAVF, blood flow through the arteriovenous shunt was pooled at diseased veins and/or sinuses. Therefore, we speculated that pooled blood at diseased veins in patients with cDAVF could be detected on arterial spin-labeled imaging (ASL). The purpose of the present study was to investigate the usefulness of ASL to detect cDAVF. MATERIALS AND METHODS Consecutive 13 patients with cDAVF who were admitted to our hospital between April 2013 and September 2016 were included in our study. We performed magnetic resonance imaging (MRI), including ASL, before DSA and within 7days after treatment for all of our patients. The accuracy for diagnosis of cDAVF was compared between conventional MRI findings and ASL findings. We also investigated the difference in ASL findings before and after treatment. RESULTS We could detect venous ASL signals in 12 patients, and this was more sensitive for diagnosis of cDAVF versus conventional MRI findings. ASL found the same location of cDAVF as conventional angiography. After successful treatment, venous ASL signals disappeared. CONCLUSIONS ASL might be useful to detect cDAVF and predict the location of diseased sinuses.
Collapse
|
16
|
Lindner T, Larsen N, Jansen O, Helle M. Selective arterial spin labeling in conjunction with phase-contrast acquisition for the simultaneous visualization of morphology, flow direction, and velocity of individual arteries in the cerebrovascular system. Magn Reson Med 2016; 78:1469-1475. [PMID: 27797413 DOI: 10.1002/mrm.26542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE In various cerebrovascular diseases the visualization of individual arteries and knowledge about their hemodynamic properties, like flow velocity and direction, can become important for an accurate diagnosis. Magnetic resonance angiography methods are intended to acquire this information, but often a single acquisition is not sufficient to retrieve all of this desired information. METHODS Using selective arterial spin labeling (ASL) methods, a single artery of interest can be tagged and visualized, whereas quantitative information about hemodynamics can be retrieved using phase-contrast techniques that are often limited regarding their selectivity. In this study, a method that allows for velocity mapping of individual arteries by incorporating phase-contrast preparation into selective ASL angiography measurements is presented. Several postprocessing steps are required to generate velocity and directional-encoded maps of selected arteries from the data acquired in a single scan. RESULTS The method was successfully evaluated in healthy volunteers, and a first application in two selected patients is presented. In one patient, an aneurysm of the middle cerebral artery is investigated, and in the second patient it is used to visualize an arterio-venous malformation. CONCLUSION Selective ASL imaging in conjunction with phase-contrast acquisition allows for investigating hemodynamic properties of individual arteries. Magn Reson Med 78:1469-1475, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Thomas Lindner
- Clinic for Radiology and Neuroradiology, UKSH Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Clinic for Radiology and Neuroradiology, UKSH Campus Kiel, Kiel, Germany
| | - Olav Jansen
- Clinic for Radiology and Neuroradiology, UKSH Campus Kiel, Kiel, Germany
| | - Michael Helle
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| |
Collapse
|
17
|
Magnetic Resonance Imaging and Computed Tomography of the Brain—50 Years of Innovation, With a Focus on the Future. Invest Radiol 2015; 50:551-6. [DOI: 10.1097/rli.0000000000000170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Jensen-Kondering U, Lindner T, van Osch MJ, Rohr A, Jansen O, Helle M. Superselective pseudo-continuous arterial spin labeling angiography. Eur J Radiol 2015; 84:1758-67. [DOI: 10.1016/j.ejrad.2015.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
|
19
|
Evaluation of the degree of arteriovenous shunting in intracranial arteriovenous malformations using pseudo-continuous arterial spin labeling magnetic resonance imaging. Neuroradiology 2015; 57:775-82. [PMID: 25903432 DOI: 10.1007/s00234-015-1533-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Intracranial arteriovenous malformations (AVMs) display venous signals on arterial spin labeling (ASL) magnetic resonance (MR) imaging due to the presence of arteriovenous shunting. Our aim was to quantitatively correlate AVM signal intensity on ASL with the degree of arteriovenous shunting estimated on digital subtraction angiography (DSA) in AVMs. METHODS MR imaging including pseudo-continuous ASL at 3 T and DSA were obtained on the same day in 40 patients with intracranial AVMs. Two reviewers assessed the nidus and venous signal intensities on ASL images to determine the presence of arteriovenous shunting. Interobserver agreement on ASL between the reviewers was determined. ASL signal intensity of the AVM lesion was correlated with AVM size and the time difference between normal and AVM venous transit times measured from the DSA images. RESULTS Interobserver agreement between two reviewers for nidus and venous signal intensities was excellent (κ = 0.80 and 1.0, respectively). Interobserver agreement regarding the presence of arteriovenous shunting was perfect (κ = 1.0). AVM signal intensity showed a positive relationship with the time difference between normal and AVM venous transit times (r = 0.638, P < 0.001). AVM signal intensity also demonstrated a positive relationship with AVM size (r = 0.561, P < 0.001). CONCLUSION AVM signal intensity on ASL in patients with AVM correlates well with the degree of early vein opacification on DSA, which corresponds to the degree of arteriovenous shunting.
Collapse
|
20
|
Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Invest Radiol 2014; 49:189-94. [PMID: 24300842 DOI: 10.1097/rli.0000000000000013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Blood flow velocity measurement with phase contrast magnetic resonance imaging (PC-MRI) is widely applied in clinical routine imaging. Usually, velocity and volumetric flow measurements are performed using unidirectional encoding of the through-plane velocity with a 2-dimensional (2D) acquisition. Single-slice acquisitions and measurements with unidirectional encoding, however, may lead to significant errors, especially in tortuous vessels, but might benefit from higher signal-to-noise ratios (SNRs). To evaluate the impact of volumetric acquisition and multidirectional velocity encoding, blood velocity measurements were performed at 3 locations in the distal internal carotid artery with a 3-dimensional, 3-directional time-resolved phase contrast (PC) sequence (4-dimensional [4D]) and a 2D acquisition with 3-directional (2D-3dir) and through-plane velocity encoding (2D-tp) derived from the same sequence. MATERIALS AND METHODS Twenty carotid arteries of 10 healthy volunteers (24-37 years) were evaluated. For each volunteer, 1 4D acquisition and 3 2D 3-directional PC measurements were placed according to a time-of-flight angiography. Unidirectionally encoded through-plane velocities were derived from the multidirectionally encoded 2D scan by discarding the in-plane components. Regions of interest were identified on the slab after postprocessing and visualization for the 4D data set as well as directly on the digital imaging and communications in medicine images for the 2D measurement. Blood flow velocity, volumetric flow, and SNRs were measured at carotid segments C4, C5, and C7 on both sides obtaining 20 values per vessel location. The quantities were tested for significant differences between each modality at all 3 locations with paired t tests. RESULTS At the segments C5 and C7, the highest peak velocities (PVs) were measured with the 4D sequence, followed by 2D-3dir and 2D tp. The PV differences between the sequences were significant (P < 0.01) at both locations. At the proximal segment of the carotid siphon (C4), the PV values of the 2D-3dir sequence were significantly higher than the ones measured with 2D-tp. The mean PV value of the 4D sequence was located in between 2D-3dir and 2D-tp without significant differences to either of the 2D sequences. Volumetric flow measurements were also significantly different between 2D and 4D acquisitions, but without a discernible trend. The SNR analysis clearly favored 2D over 4D acquisitions because of higher inflow enhancement. CONCLUSIONS The results of the current study show that velocity measurements with a unidirectional encoded through-plane PC sequence lead to a significant underestimation of velocity values in tortuous vessels. In all 3 evaluated segments of the distal internal carotid artery, multidirectional velocity encoding revealed significantly higher PV values than those of unidirectional velocity encoding. These results indicate that multidirectional encoding should be preferred to unidirectional encoding for velocity measurements in tortuous vessels. Furthermore, 4D PC-MRI is superior to 2D-3dir in 2 of 3 locations. However, single-slice measurements with multidirectional velocity encoding have higher SNR and may be an alternative to 4D PC-MRI with a scan time of only approximately 90 seconds per slice.
Collapse
|
21
|
Effect of delayed transit time on arterial spin labeling: correlation with dynamic susceptibility contrast perfusion magnetic resonance in moyamoya disease. Invest Radiol 2014; 48:795-802. [PMID: 23764569 DOI: 10.1097/rli.0b013e3182981137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Because arterial spin labeling (ASL) is completely noninvasive and provides absolute cerebral blood flow (CBF) information within a brief period, the technique has been increasingly used for patients with acute or chronic cerebrovascular disease. However, the effect of delayed transit time on ASL can generate errors in the quantitative estimation of CBF using ASL. Furthermore, in the clinical setting, in which transit time is uncertain, the variability of the transit time in patients reduces the validity of CBF on ASL images. Therefore, we evaluated the effect of delayed transit time on ASL images compared with dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) in patients with moyamoya disease. MATERIALS AND METHODS Arterial spin labeling and DSC perfusion MR images were acquired in 54 patients with moyamoya disease. Vascular territory and anatomical structure-based regions of interest (ROIs) were applied to the CBF and time-to-peak (TTP) maps from DSC and a CBF map using ASL. The change of the correlation coefficient (r) between normalized CBFs (nCBFs) from DSC and ASL was evaluated with categorization by the TTP. In addition, the dependence of the difference between the nCBF values from DSC and ASL on the TTP obtained using DSC was also analyzed. RESULTS The nCBF values from DSC and ASL were strongly correlated (r = 0.877 and r = 0.867 for the internal carotid artery (ICA) and middle cerebral artery territory-based ROIs, respectively; P < 0.0002 for both; r = 0.783 for the anatomical structure-based ROIs; P < 0.0084). However, correlations between nCBFs from DSC and ASL tended to be weaker when the TTP increased, with recovery when the TTP was extremely delayed (>25 seconds). The TTP delay had a positive effect on the difference between the nCBF values from the DSC and ASL for the ICA territory-based and anatomical structure-based ROIs (standardized coefficients, 0.224 for the ICA territory-based ROIs; P = 0.0410; 0.189 for the anatomical structure-based ROIs; P < 0.0084). CONCLUSIONS Our results demonstrate that the correlation between the CBF values from the ASL and DSC tends to be weaker when the transit time is more delayed, with the restoration of the strength of the correlation when the TTP is extremely delayed (>25 seconds). Understanding the effect of delayed transit time on the CBF from ASL perfusion MR in a clinical setting would facilitate the proper interpretation of ASL images.
Collapse
|
22
|
Soize S, Bouquigny F, Kadziolka K, Portefaix C, Pierot L. Value of 4D MR angiography at 3T compared with DSA for the follow-up of treated brain arteriovenous malformation. AJNR Am J Neuroradiol 2014; 35:1903-9. [PMID: 24904052 DOI: 10.3174/ajnr.a3982] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Four-dimensional, contrast-enhanced MRA is a useful technique for the diagnosis and classification of brain AVM. The purpose of this study was to evaluate its usefulness in the follow-up of treated brain AVM. MATERIALS AND METHODS Patients with treated brain AVM (embolization, radiosurgery, and/or surgery) were investigated with both DSA (the "gold standard") and 4D MRA. Four-dimensional MRA was performed at 3T using a 4D sequence, combining contrast-enhanced timing-robust angiography, keyhole, and sensitivity encoding techniques. Examinations were evaluated by 2 independent readers and disagreements were resolved by a third reader. Interobserver and intermodality agreement with respect to residual nidus, residual venous drainage, and brain AVM patency were determined. RESULTS Between May 2008 and February 2013, 37 patients with a median age of 45 years (interquartile range = 26-55) were prospectively included. Examinations were acquired 36 months (IQR = 10-45.5) after the last treatment. Interobserver agreement for brain AVM patency was very good for both 4D MRA (κ 0.82, 95% CI .67-.98) and DSA (κ 0.84, 95% CI .69-.98). After consensus reading, intermodality agreement for the evaluation of brain AVM patency was good (κ 0.73, 95% CI .55-.90). Diagnostic accuracy of 4D MRA for residual brain AVM compared with DSA, reached a sensitivity of 73.7%, specificity 100%, positive predictive value 100%, and negative predictive value 78.3%. Agreements by technique of treatment are also detailed. CONCLUSIONS Four-dimensional MRA is a useful radiation-free technique for the follow-up of patients with treated brain AVM, especially patients treated by radiosurgery. However, given its actual limitations it is not sufficient to assert the cure; DSA remains mandatory for this purpose.
Collapse
Affiliation(s)
- S Soize
- From the Department of Radiology, Hôpital Maison Blanche, Université de Champagne-Ardenne, Reims, France
| | - F Bouquigny
- From the Department of Radiology, Hôpital Maison Blanche, Université de Champagne-Ardenne, Reims, France
| | - K Kadziolka
- From the Department of Radiology, Hôpital Maison Blanche, Université de Champagne-Ardenne, Reims, France
| | - C Portefaix
- From the Department of Radiology, Hôpital Maison Blanche, Université de Champagne-Ardenne, Reims, France
| | - L Pierot
- From the Department of Radiology, Hôpital Maison Blanche, Université de Champagne-Ardenne, Reims, France.
| |
Collapse
|
23
|
Current Technological Advances in Magnetic Resonance With Critical Impact for Clinical Diagnosis and Therapy. Invest Radiol 2013; 48:869-77. [DOI: 10.1097/01.rli.0000434380.71793.d3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
|
25
|
Abstract
Traditionally non-contrast CT has been considered the first choice imaging modality for acute stroke. Acute ischemic stroke patients presenting to the hospital within 3-hours from symptom onset and without any visible hemorrhages or large lesions on CT images are considered optimum reperfusion therapy candidates. However, non-contrast CT alone has been unable to identify best reperfusion therapy candidates outside this window. New advanced imaging techniques are now being used successfully for this purpose. Non-invasive CT or MR angiography images can be obtained during initial imaging evaluation for identification and characterization of vascular lesions, including occlusions, aneurysms, and malformations. Either CT-based perfusion imaging or MRI-based diffusion and perfusion imaging performed immediately upon arrival of a patient to the hospital helps estimate the extent of fixed core and penumbra in ischemic lesions. Patients having occlusive lesions with small fixed cores and large penumbra are preferred reperfusion therapy candidates.
Collapse
|
26
|
Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases. J Magn Reson Imaging 2013; 38:496-503. [DOI: 10.1002/jmri.24041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/13/2012] [Indexed: 11/07/2022] Open
|
27
|
Boström J, Hadizadeh DR, Block W, Willinek W, Schild HH, Träber F. Magnetic resonance spectroscopic study of radiogenic changes after radiosurgery of cerebral arteriovenous malformations with implications for the differential diagnosis of radionecrosis. Radiat Oncol 2013; 8:54. [PMID: 23497623 PMCID: PMC3621843 DOI: 10.1186/1748-717x-8-54] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of radionecrosis after radiosurgery is 5-20%. That radionecrosis after radiosurgery may be confused with a malignant tumor is a known phenomenon and problem. METHODS Three similarly treated patients with cAVM, 1 patient with symptomatic radionecrosis and 2 patients with normal post-radiation MRI changes, were selected and studied in detail with magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and magnetic resonance spectroscopy (MRS). 2 cAVM were located in eloquent locations and were classified as Spetzler-Martin grade (SM) III such that interdisciplinary radiosurgery was recommended; a third patient with a left frontal SM II cAVM refused surgery. 1 patient was male, and 2 were female. The patient's ages ranged from 38 to 62 years (median, 39 years). The nidus volume (= planning target volume = PTV) ranged from 2.75 to 6.89 ccm (median, 6.41 ccm). The single dose was 20 Gy at the isocenter of the PTV encompassing the 80 - 90% isodose. The median follow-up period was 20 months (range, 16 - 84 months). Toxicities were evaluated with the Common Terminology Criteria (CTC) for adverse events version 3.0. RESULTS No patient suffered a bleeding from cAVM during the study period. A complete nidus occlusion was shown in all patients with time-resolved MRA. All patients showed radiogenic MRI changes, 1 patient showed excessive radionecrosis. This patient was oligosymptomatic and under temporary corticoid therapy symptoms resolved completely.Following patterns associated with radionecrosis in the MRS studies were identified in our collective: 2D spectroscopic imaging (2D-SI) revealed much lower concentrations of metabolites in the lesion as compared to contralateral healthy tissue in all patients. Whereas regions with regular post-radiosurgery effects showed almost normal levels of Cho and a Cho/Cr ratio < 2.0, regions with radionecrosis were characterized by increased lipid levels and a Cho/Cr ratio > 2.0 in conjunction with decreased absolute levels of all metabolites, especially of Cr and NAA. CONCLUSIONS MRS is an increasingly valuable tool for the differential diagnosis of radiation reactions. Specific patterns of MRS spectra in radionecrosis were identified; in synopsis with clinical parameters, these changes have to be taken into account to avoid misdiagnosis.
Collapse
Affiliation(s)
- Jan Boström
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Str, 25, Bonn 53105, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Illies T, Forkert ND, Ries T, Regelsberger J, Fiehler J. Classification of cerebral arteriovenous malformations and intranidal flow patterns by color-encoded 4D-hybrid-MRA. AJNR Am J Neuroradiol 2012; 34:46-53. [PMID: 22878012 DOI: 10.3174/ajnr.a3204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE 4D MRA has been evolving as a noninvasive supplement for DSA. The purpose of this study was to evaluate the feasibility of a newly developed blood flow visualization technique for the classification of cerebral AVMs. We hypothesized that 4D-hMRA allows detection of different flow patterns within the nidus as well as differentiation of feeders and draining veins and has very good agreement with DSA regarding the Spetzler-Martin grade. MATERIALS AND METHODS Thirty-one consecutive patients with AVMs were evaluated by using 4D-hMRA and DSA by 2 blinded raters. Rating criteria included Spetzler-Martin score and other morphologic variables together with a new scale for 3 intranidal flow patterns (homogeneous = 1, unidirectional = 2, heterogeneous = 3). RESULTS The Spetzler-Martin grades were rated different from DSA in 5 cases by rater 1 and in 3 cases by rater 2 with an excellent interrater reliability of κ = 0.96 (4/31, 1 by size and 3 by drainage). Each reader missed 5 feeders on 4D-hMRA. Draining veins were distinguished in the temporal course in 7 on DSA but in 8 and 12 on 4D-hybrid-MRA (raters 1 and 2 respectively), with κ = 0.79. A type 1 intranidal flow pattern was recognizable in 9 (30%) patients; type 2, in 19 (60%); and type 3, in 3 (10%). CONCLUSIONS 4D-hMRA allows reliable Spetzler-Martin grading and detection of brain arteriovenous malformation feeding arteries and draining veins, with the drawback that for small vessels DSA is still needed. Draining veins might even be detected with higher sensitivity than on DSA. Discrimination of different intranidal flow patterns is possible, but their relevance for hemorrhage risk assessment and therapy planning requires further study.
Collapse
Affiliation(s)
- T Illies
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
29
|
Forkert ND, Fiehler J, Illies T, Möller DPF, Handels H, Säring D. 4D blood flow visualization fusing 3D and 4D MRA image sequences. J Magn Reson Imaging 2012; 36:443-53. [PMID: 22535682 DOI: 10.1002/jmri.23652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/29/2012] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To present and evaluate the feasibility of a novel automatic method for generating 4D blood flow visualizations fusing high spatial resolution 3D and time-resolved (4D) magnetic resonance angiography (MRA) datasets. MATERIALS AND METHODS In a first step, the cerebrovascular system is segmented in the 3D MRA dataset and a surface model is computed. The hemodynamic information is extracted from the 4D MRA dataset and transferred to the surface model using rigid registration where it can be visualized color-coded or dynamically over time. The presented method was evaluated using software phantoms and 20 clinical datasets from patients with an arteriovenous malformation. Clinical evaluation was performed by comparison of Spetzler-Martin scores determined from the 4D blood flow visualizations and corresponding digital subtraction angiographies. RESULTS The performed software phantom validation showed that the presented method is capable of producing reliable visualization results for vessels with a minimum diameter of 2 mm for which a mean temporal error of 0.27 seconds was achieved. The clinical evaluation based on 20 datasets comparing the 4D visualization to DSA images revealed an excellent interrater reliability. CONCLUSION The presented method enables an improved combined representation of blood flow and anatomy while reducing the time needed for clinical rating.
Collapse
Affiliation(s)
- Nils Daniel Forkert
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Le TT, Fischbein NJ, André JB, Wijman C, Rosenberg J, Zaharchuk G. Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am J Neuroradiol 2011; 33:61-8. [PMID: 22158927 DOI: 10.3174/ajnr.a2761] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE DAVFs and small AVMs are difficult to detect on conventional MR imaging/MRA or CTA examinations and often require DSA for definitive diagnosis. The purpose of this study was to assess the value of venous signal intensity on ASL imaging for making this diagnosis. MATERIALS AND METHODS Two neuroradiologists and 1 neurologist reviewed MR imaging studies in 26 patients, 15 of whom had DSA-proved DAVFs or small (<2 cm) AVMs. Pseudocontinuous ASL was performed at 1.5T with background-suppressed 3D-FSE readout. Using a 5-point scale, these readers assessed the likelihood of positive findings on a DSA study before and after reviewing the ASL findings. Agreement on imaging findings, including venous ASL signal intensity, was performed by using κ statistics. Logistic regression and ROC analysis were performed to determine which imaging findings improved diagnosis. RESULTS Venous ASL signal intensity was seen frequently in cases with positive findings on DSA. The sensitivity and specificity of venous ASL signal intensity for predicting positive findings on a DSA study were 78% and 85%, respectively. On ROC analysis, there was a significant increase in the AUC after review of the ASL images (AUC = 0.798 pre-ASL, AUC = 0.891 post-ASL; P = .02). Multivariate regression identified venous ASL signal intensity as the strongest predictor of positive findings on a DSA study, with an odds ratio of 17.3 (95% CI, 3.3-90.4). CONCLUSIONS Identifying venous ASL signal intensity improved detection of DAVFs and small AVMs. Attention to this finding may improve triage to DSA in patients with suspected small vascular malformations.
Collapse
Affiliation(s)
- T T Le
- Department of Radiology, Stanford University, CA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Measurement of cerebral circulation times using dynamic whole-brain CT-angiography: feasibility and initial experience. Neurol Sci 2011; 33:741-7. [DOI: 10.1007/s10072-011-0785-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
|
32
|
Lüdemann L, Jedrzejewski G, Heidenreich J, Han ET, Bruhn H. Perfusion imaging of cerebral arteriovenous malformations: a study comparing quantitative continuous arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging at 3 T. Magn Reson Imaging 2011; 29:1157-64. [PMID: 21920687 DOI: 10.1016/j.mri.2011.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/26/2011] [Accepted: 07/30/2011] [Indexed: 11/28/2022]
Abstract
Assessment of hemodynamics in arteriovenous malformations (AVMs) is important for estimating the risk of bleeding as well as planning and monitoring therapy. In tissues with perfusion values significantly higher than cerebral cortex, continuous arterial spin labeling (CASL) permits both adequate representation and quantification of perfusion. Thirteen patients who had cerebral AVMs were examined with two magnetic resonance imaging (MRI) techniques: perfusion imaging using a CASL technique with two delay times, 800 and 1200 ms, and T(2)-weighted dynamic contrast-enhanced MRI (T(2)-DCE-MRI). The signal-to-noise ratio obtained in our study with the CASL technique at 3 T was sufficient to estimate perfusion in gray matter. Both nidal and venous perfusion turned out larger by factors of 1.71±2.01 and 2.48±1.51 in comparison to T(2)-DCE-MRI when using CASL at delay times of 800 and 1200 ms, respectively. Moreover, the venous and nidal perfusion values of the AVMs measured at T(2)-DCE-MRI did not correlate with those observed at CASL. Evaluation of average perfusion values yielded significantly different results when using a shorter versus a longer delay time. Average gray matter perfusion was 15.8% larger when measured at delay times of w=800 ms versus w=1200 ms, while nidal perfusion was 15.7% larger and venous perfusion was 34.6% larger, respectively. In conclusion, the extremely high perfusion within an AVM could be successfully quantified using CASL. A shorter postlabeling delay time of w=800 ms seems to be more appropriate than a longer time of w=1200 ms because of possible inflow of unlabeled spins at the latter.
Collapse
Affiliation(s)
- Lutz Lüdemann
- Department of Radiotherapy and Radio-oncology, Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cerebral proliferative angiopathy (CPA) is an unusual type of vascular malformation with unique clinical and imaging characteristics that distinguish it from the classic arteriovenous malformations. The features of CPA include absence of dominant arterial feeders or flow-related aneurysms, capillary angioectasia without large draining veins, and presence of intermingled normal brain parenchyma that is hypoperfused. We describe the magnetic resonance imaging findings including perfusion in 3 patients with CPA.
Collapse
|