1
|
Vašíček J, Baláži A, Tirpáková M, Tomka M, Chrenek P. Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells. J Dev Biol 2025; 13:6. [PMID: 40137013 PMCID: PMC11942849 DOI: 10.3390/jdb13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Cryopreservation is a widely used method for the long-term preservation of reproductive or somatic cells. It is known that this storage method may negatively affect cell viability, proliferation, differentiation, etc. However, there is a lack of information about whether cryostorage can alter the content of intracellular minerals. Therefore, we focused this study on the analysis of the mineral composition of living cells before and after long-term cold storage. Briefly, three different primary cell lines were established from rabbits as follows: endothelial progenitor cells from peripheral blood (EPCs), endothelial progenitor cells from bone marrow (BEPCs), and mesenchymal stem cells from adipose tissue (AT-MSCs), which were cultured until passage 3 prior to cryopreservation in liquid nitrogen. Samples from freshly cultured and frozen-thawed cells were mineralized and analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the content of minerals (macro: Ca, Na, K, and Mg, and micro: Zn, Fe, Cu, Al, Co, Mn, Sr, and Ni). After cryopreservation, we found significantly decreased content of K in frozen-thawed EPCs (p < 0.01) and BEPCs (p < 0.0001) and Ca in AT-MSCs (p < 0.05), while Na was increased in frozen-thawed BEPCs (p < 0.05). Concentrations of Fe and Al were reduced significantly in frozen-thawed EPCs (both p < 0.0001) and AT-MSCs (p < 0.001 and p < 0.0001, respectively). On the contrary, Fe and Al were elevated in frozen-thawed BEPCs (p < 0.0001 and p < 0.01, respectively) together with Ni (p < 0.0001). In addition, decreased Zn (p < 0.05) was observed in cryopreserved AT-MSCs. In conclusion, the ICP-OES technique might be used to analyze the basic elemental composition of animal cells in fresh or frozen-thawed conditions. Nevertheless, additional studies are needed to reveal the possible impact of cryopreservation on cell fate by changing the content of intracellular minerals.
Collapse
Affiliation(s)
- Jaromír Vašíček
- National Agricultural and Food Center, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (P.C.)
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Andrej Baláži
- National Agricultural and Food Center, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (P.C.)
| | - Mária Tirpáková
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Marián Tomka
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Peter Chrenek
- National Agricultural and Food Center, Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.B.); (P.C.)
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
2
|
Athertya JS, Akers J, Sedaghat S, Wei Z, Moazamian D, Dwek S, Thu M, Jang H. Detection of iron oxide nanoparticle (IONP)-labeled stem cells using quantitative ultrashort echo time imaging: a feasibility study. Quant Imaging Med Surg 2023; 13:585-597. [PMID: 36819276 PMCID: PMC9929408 DOI: 10.21037/qims-22-654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023]
Abstract
Background In this study, we investigated the feasibility of quantitative ultrashort echo time (qUTE) magnetic resonance (MR) imaging techniques in the detection and quantification of iron oxide nanoparticle (IONP)-labeled stem cells. Methods A stem cell phantom containing multiple layers of unlabeled or labeled stem cells with different densities was prepared. The phantom was imaged with quantitative UTE (qUTE) MR techniques [i.e., UTE-T1 mapping, UTE-T2* mapping, and UTE-based quantitative susceptibility mapping (UTE-QSM)] as well as with a clinical T2 mapping sequence on a 3T clinical MR system. For T1 mapping, a variable flip angle (VFA) method based on actual flip angle imaging (AFI) technique was utilized. For T2* mapping and UTE-QSM, multiple images with variable, interleaved echo times including UTE images and gradient recalled echo (GRE) images were used. For UTE-QSM, the phase information from the multi-echo images was utilized and processed using a QSM framework based on the morphology-enabled dipole inversion (MEDI) algorithm. The qUTE techniques were also evaluated in an ex vivo experiment with a mouse injected with IONP-labeled stem cells. Results In the phantom experiment, the parameters estimated with qUTE techniques showed high linearity with respect to the density of IONP-labeled stem cells (R2>0.99), while the clinical T2 parameter showed impaired linearity (R2=0.87). In the ex vivo mouse experiment, UTE-T2* mapping and UTE-QSM showed feasibility in the detection of injected stem cells with high contrast, whereas UTE-T1 and UTE-T2* showed limited detection. Overall, UTE-QSM demonstrated the best contrast of all, with other methods being subjected more to a confounding factor due to different magnetic susceptibilities of various types of neighboring tissues, which creates inhomogeneous contrast that behaves similar to IONP. Conclusions In this study, we evaluated the feasibility of a series of qUTE imaging techniques as well as conventional T2 mapping for the detection of IONP-labeled stem cells in vitro and ex vivo. UTE-QSM performed superior amongst other qUTE techniques as well as conventional T2 mapping in detecting stem cells with high contrast.
Collapse
Affiliation(s)
- Jiyo S. Athertya
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Sam Sedaghat
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Mya Thu
- VisiCELL Medical Inc., San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
4
|
Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, Goodman S, Moseley M. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 2022; 52:354-366. [PMID: 34046709 PMCID: PMC8626538 DOI: 10.1007/s00247-021-05098-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.
Collapse
Affiliation(s)
- Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Ali Rashidi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Michael Iv
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| | - Robbie G. Majzner
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | - Sheri L. Spunt
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University
| | | | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
| |
Collapse
|
5
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Shelat R, Bhatt LK, Paunipagar B, Kurian T, Khanna A, Chandra S. Regeneration of hyaline cartilage in osteochondral lesion model using L-lysine magnetic nanoparticles labeled mesenchymal stem cells and their in vivo imaging. J Tissue Eng Regen Med 2020; 14:1604-1617. [PMID: 32840054 DOI: 10.1002/term.3120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Treatment of osteochondral defects continues to pose a major challenge for patients and orthopedic surgeons due to the limited healing potential of articular cartilage. Mesenchymal stem cells (MSCs) possess therapeutic potential for the treatment of osteochondral pain and pathology. However, it is necessary to use proper labeling and imaging agent of stem cells that can decipher its role posttransplantation. A major limitation of routinely used contrast agents is signal dilution over a period of time which limits its use for further studies. At the same time, regeneration of fibrocartilage over native hyaline cartilage also limits the use of conventional therapies. The present study evaluates the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) for the treatment of osteochondral defect in rats with the regeneration of hyaline cartilage in situ and in vivo monitoring of the stem cells using L-lysine functionalized magnetic iron oxide nanoparticles (lys-IONPs). L-lysine stabilizes the iron oxide nanoparticles, enhances the biocompatibility, and provides functionalities for efficient stem cell labeling. in vitro toxic effects of lys-IONPs on mitochondrial impairment, morphological alterations, and actin cytoskeleton reveal minimum damage to BM-MSCs. Histological data (H and E, Masson's trichrome and immunohistochemistry) describe the early initiation of healing and regeneration of hyaline-like cartilage over fibrocartilage in stem cell treated groups. MR scans demonstrate generation of hypointense signals in lys-IONPs-BMSCs with improved signal intensity and minimum loss over 28 days revealing its use as a long-term stem cell labeling and imaging agent.
Collapse
Affiliation(s)
- Ruchita Shelat
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | | | | | - Aparna Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Mumbai, India.,Computational Biology and Translational Research, Amity University, Mumbai, India
| | - Sudeshna Chandra
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Mumbai, India
| |
Collapse
|
7
|
Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, Janssen L, Lorite GS, Saarakkala S, Mobasheri A. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Curr Rheumatol Rep 2020; 22:12. [PMID: 32248371 PMCID: PMC7128005 DOI: 10.1007/s11926-020-0884-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review article, we discuss the potential for employing nanotechnological strategies for the diagnosis, monitoring, and clinical management of osteoarthritis (OA) and explore how nanotechnology is being integrated rapidly into regenerative medicine for OA and related osteoarticular disorders. RECENT FINDINGS We review recent advances in this rapidly emerging field and discuss future opportunities for innovations in enhanced diagnosis, prognosis, and treatment of OA and other osteoarticular disorders, the smart delivery of drugs and biological agents, and the development of biomimetic regenerative platforms to support cell and gene therapies for arresting OA and promoting cartilage and bone repair. Nanotubes, magnetic nanoparticles, and other nanotechnology-based drug and gene delivery systems may be used for targeting molecular pathways and pathogenic mechanisms involved in OA development. Nanocomposites are also being explored as potential tools for promoting cartilage repair. Nanotechnology platforms may be combined with cell, gene, and biological therapies for the development of a new generation of future OA therapeutics. Graphical Abstract.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Lauriane Janssen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Gabriela S Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania.
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, UK.
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, Saudi Arabia.
- University Medical Center Utrecht, Department of Orthopedics and Department of Rheumatology & Clinical Immunology, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Nejadnik H, Tseng J, Daldrup-Link H. Magnetic resonance imaging of stem cell-macrophage interactions with ferumoxytol and ferumoxytol-derived nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1552. [PMID: 30734542 PMCID: PMC6579657 DOI: 10.1002/wnan.1552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
"Off the shelf" allogeneic stem cell transplants and stem cell nano-composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post-transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used "off label" as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol-enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol-labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol-labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase-3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune-modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Jessica Tseng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Heike Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| |
Collapse
|
9
|
Theruvath AJ, Nejadnik H, Lenkov O, Yerneni K, Li K, Kuntz L, Wolterman C, Tuebel J, Burgkart R, Liang T, Felt S, Daldrup-Link HE. Tracking Stem Cell Implants in Cartilage Defects of Minipigs by Using Ferumoxytol-enhanced MRI. Radiology 2019; 292:129-137. [PMID: 31063081 DOI: 10.1148/radiol.2019182176] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Cartilage repair outcomes of matrix-associated stem cell implants (MASIs) in patients have been highly variable. Conventional MRI cannot help distinguish between grafts that will and grafts that will not repair the underlying cartilage defect until many months after the repair. Purpose To determine if ferumoxytol nanoparticle labeling could be used to depict successful or failed MASIs compared with conventional MRI in a large-animal model. Materials and Methods Between January 2016 and December 2017, 10 Göttingen minipigs (n = 5 male; n = 5 female; mean age, 6 months ± 5.1; age range, 4-20 months) received implants of unlabeled (n = 12) or ferumoxytol-labeled (n = 20) viable and apoptotic MASIs in cartilage defects of the distal femur. All MASIs were serially imaged with MRI on a 3.0-T imaging unit at week 1 and weeks 2, 4, 8, 12, and 24, with calculation of T2 relaxation times. Cartilage regeneration outcomes were assessed by using the MR observation of cartilage repair tissue (MOCART) score (scale, 0-100), the Pineda score, and histopathologic quantification of collagen 2 production in the cartilage defect. Findings were compared by using the unpaired Wilcoxon rank sum test, a linear regression model, the Fisher exact test, and Pearson correlation. Results Ferumoxytol-labeled MASIs showed significant T2 shortening (22.2 msec ± 3.2 vs 27.9 msec ± 1.8; P < .001) and no difference in cartilage repair outcomes compared with unlabeled control MASIs (P > .05). At week 2 after implantation, ferumoxytol-labeled apoptotic MASIs showed a loss of iron signal and higher T2 relaxation times compared with ferumoxytol-labeled viable MASIs (26.6 msec ± 4.9 vs 20.8 msec ± 5.3; P = .001). Standard MRI showed incomplete cartilage defect repair of apoptotic MASIs at 24 weeks. Iron signal loss at 2 weeks correlated with incomplete cartilage repair, diagnosed at histopathologic examination at 12-24 weeks. Conclusion Ferumoxytol nanoparticle labeling can accelerate the diagnosis of successful and failed matrix-associated stem cell implants at MRI in a large-animal model. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Sneag and Potter in this issue.
Collapse
Affiliation(s)
- Ashok J Theruvath
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Hossein Nejadnik
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Olga Lenkov
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Ketan Yerneni
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Kai Li
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Lara Kuntz
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Cody Wolterman
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Jutta Tuebel
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Rainer Burgkart
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Tie Liang
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Stephen Felt
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Heike E Daldrup-Link
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| |
Collapse
|
10
|
Bulte JWM, Daldrup-Link HE. Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology 2018; 289:604-615. [PMID: 30299232 PMCID: PMC6276076 DOI: 10.1148/radiol.2018180449] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/29/2022]
Abstract
Cell therapy has provided unprecedented opportunities for tissue repair and cancer therapy. Imaging tools for in vivo tracking of therapeutic cells have entered the clinic to evaluate therapeutic cell delivery and retention in patients. Thus far, clinical cell tracking studies have been a mere proof of principle of the feasibility of cell detection. This review centers around the main clinical queries associated with cell therapy: Have cells been delivered correctly at the targeted site of injection? Are cells still alive, and, if so, how many? Are cells being rejected by the host, and, if so, how severe is the immune response? For stem cell therapeutics, have cells differentiated into downstream cell lineages? Is there cell proliferation including tumor formation? At present, clinical cell tracking trials have only provided information on immediate cell delivery and short-term cell retention. The next big question is if these cell tracking tools can improve the clinical management of the patients and, if so, by how much, for how many, and for whom; in addition, it must be determined whether tracking therapeutic cells in every patient is needed. To become clinically relevant, it must now be demonstrated how cell tracking techniques can inform patient treatment and affect clinical outcomes.
Collapse
Affiliation(s)
- Jeff W. M. Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Departments of Chemical & Biomolecular Engineering, Biomedical Engineering, and Oncology, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205 (J.W.M.B.); and Departments of Radiology, Molecular Imaging Program at Stanford (MIPS) and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (H.E.D.L.)
| | - Heike E. Daldrup-Link
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Departments of Chemical & Biomolecular Engineering, Biomedical Engineering, and Oncology, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205 (J.W.M.B.); and Departments of Radiology, Molecular Imaging Program at Stanford (MIPS) and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (H.E.D.L.)
| |
Collapse
|
11
|
Li Y, Ye D, Li M, Ma M, Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem 2018. [DOI: 10.1002/cphc.201701294] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Dewen Ye
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Mingxi Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ming Ma
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ning Gu
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| |
Collapse
|
12
|
Peng BY, Chiou CS, Dubey NK, Yu SH, Deng YH, Tsai FC, Chiang HS, Shieh YH, Chen WH, Deng WP. Non-invasive in vivo molecular imaging of intra-articularly transplanted immortalized bone marrow stem cells for osteoarthritis treatment. Oncotarget 2017; 8:97153-97164. [PMID: 29228600 PMCID: PMC5722552 DOI: 10.18632/oncotarget.21315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
Pathophysiology of osteoarthritis (OA) is characterized by progressive loss of articular cartilage in the knee-joints. To impart regenerative ability in lowly metabolizing chondrocytes, the bone marrow stem cells (BMSCs) has recently been recognized as a superior alternative treatment for OA. However, study of primary BMSCs-mediated chondrogenesis is difficult due to progressive cellular aging and replicative senescence. To obtain a therapeutic cell population for OA, BMSCs were immortalized by human papilloma virus (HPV)-16 E6/E7 along with mCherry luciferase (mCL), a gene marker for non-invasive imaging, and designated as iBMSCs-mCL. Next, their cell morphology, population doubling time (PDT) and colony forming ability (CFU) were evaluated. Furthermore, pluripotency and immunophenotypic markers were investigated. To deduce therapeutic ability, iBMSCs-mCL were intra-articularly injected into right knee of anterior cruciate ligament transaction (ACLT)-OA mice model and tracked through non-invasive bioluminescence imaging. Cell morphology of iBMSCs-mCL was similar to parental BMSCs. PDT and CFU ability of iBMSCs-mCLs were significantly increased. Pluripotency and immunophenotypic markers were highly expressed in iBMSC-mCL. Long-term survival and tri-lineage differentiation particularly chondrogenic potential of iBMSCs-mCL were also demonstrated in vitro and then in vivo which was monitored through non-invasive imaging. Intensive bioluminescent signals in iBMSCs-mCL administered knee-joint indicated a marked in vivo survival and proliferation of iBMSCs-mCL. Immunohistochemical staining for type II collagen (IHC of Col II) and alcian blue & safranin o staining of proteoglycans also corroborated cartilage regeneration by iBMSCs-mCL. Conclusively, iBMSCs-mCL maintains stemness and in vivo cartilage regeneration potential suggesting a promising avenue for development of OA therapeutics.
Collapse
Affiliation(s)
- Bou-Yue Peng
- Oral and Maxillofacial Surgery Section, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Sheng Chiou
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Navneet Kumar Dubey
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsun Yu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yue-Hua Deng
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Life Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei, Taiwan
| | - Han-Sun Chiang
- Department of Life Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Ying-Hua Shieh
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hong Chen
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
13
|
Berninger MT, Mohajerani P, Wildgruber M, Beziere N, Kimm MA, Ma X, Haller B, Fleming MJ, Vogt S, Anton M, Imhoff AB, Ntziachristos V, Meier R, Henning TD. Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography. PHOTOACOUSTICS 2017; 6:37-47. [PMID: 28540184 PMCID: PMC5430154 DOI: 10.1016/j.pacs.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 05/10/2023]
Abstract
The distribution of intramyocardially injected rabbit MSCs, labeled with the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo-cyanine-iodide (DiR) using hybrid Fluorescence Molecular Tomography-X-ray Computed Tomography (FMT-XCT) and Multispectral Optoacoustic Tomography (MSOT) imaging technologies, was investigated. Viability and induction of apoptosis of DiR labeled MSCs were assessed by XTT- and Caspase-3/-7-testing in vitro. 2 × 106, 2 × 105 and 2 × 104 MSCs labeled with 5 and 10 μg DiR/ml were injected into fresh frozen rabbit hearts. FMT-XCT, MSOT and fluorescence cryosection imaging were performed. Concentrations up to 10 μg DiR/ml did not cause apoptosis in vitro (p > 0.05). FMT and MSOT imaging of labeled MSCs led to a strong signal. The imaging modalities highlighted a difference in cell distribution and concentration correlated to the number of injected cells. Ex-vivo cryosectioning confirmed the molecular fluorescence signal. FMT and MSOT are sensitive imaging techniques offering high-anatomic resolution in terms of detection and distribution of intramyocardially injected stem cells in a rabbit model.
Collapse
Affiliation(s)
- Markus T. Berninger
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Trauma and Orthopaedic Surgery, BG Unfallklinik Murnau, Murnau, Germany
- Corresponding author at: Department of Trauma and Orthopaedic Surgery, BG Unfallklinik Murnau, Prof.-Küntscher-Strasse 8, 82418, Murnau, Germany.
| | - Pouyan Mohajerani
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Wildgruber
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Melanie A. Kimm
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Xiaopeng Ma
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Bernhard Haller
- Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Megan J. Fleming
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Vogt
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Anton
- Institute for Experimental Oncology and Therapy Research and Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Andreas B. Imhoff
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Reinhard Meier
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
14
|
Savla R, Minko T. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 2017; 113:122-140. [PMID: 27374457 DOI: 10.1016/j.addr.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
The present review analyzes various approaches for the design and synthesis of different nanoparticles for imaging and therapy. Nanoparticles for computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and optical imaging are discussed. The influence of nanoparticle size, shape, surface charge, composition, surface functionalization, active targeting and other factors on imaging and therapeutic efficacy is analyzed. Cyto- and genotoxicity of nanoparticles are also discussed. Special attention in the review is paid to the imaging of apoptotic tissues and cells in different diseases.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States.
| |
Collapse
|
15
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|
16
|
Iyer SR, Xu S, Stains JP, Bennett CH, Lovering RM. Superparamagnetic Iron Oxide Nanoparticles in Musculoskeletal Biology. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:373-385. [PMID: 27998240 DOI: 10.1089/ten.teb.2016.0437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of platelet-rich plasma and mesenchymal stem cells has garnered much attention in orthopedic medicine, focusing on the biological aspects of cell function. However, shortly after systemic delivery, or even a local injection, few of the transplanted stem cells or platelets remain at the target site. Improvement in delivery, and the ability to track and monitor injected cells, would greatly improve clinical translation. Nanoparticles can effectively and quickly label most cells in vitro, and evidence to date suggests such labeling does not compromise the proliferation or differentiation of cells. A specific type of nanoparticle, the superparamagnetic iron oxide nanoparticle (SPION), is already employed as a magnetic resonance imaging (MRI) contrast agent. SPIONs can be coupled with cells or bioactive molecules (antibodies, proteins, drugs, etc.) to form an injectable complex for in vivo use. The biocompatibility, magnetic properties, small size, and custom-made surface coatings also enable SPIONs to be used for delivering and monitoring of small molecules, drugs, and cells, specifically to muscle, bone, or cartilage. Because SPIONs consist of cores made of iron oxides, targeting of SPIONs to a specific muscle, bone, or joint in the body can be enhanced with the help of applied gradient magnetic fields. Moreover, MRI has a high sensitivity to SPIONs and can be used for noninvasive determination of successful delivery and monitoring distribution in vivo. Gaps remain in understanding how the physical and chemical properties of nanomaterials affect biological systems. Nonetheless, SPIONs hold great promise for regenerative medicine, and progress is being made rapidly toward clinical applications in orthopedic medicine.
Collapse
Affiliation(s)
- Shama R Iyer
- 1 Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Su Xu
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Joseph P Stains
- 1 Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Craig H Bennett
- 1 Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Richard M Lovering
- 1 Department of Orthopaedics, University of Maryland School of Medicine , Baltimore, Maryland.,3 Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
17
|
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular Imaging With MRI. Top Magn Reson Imaging 2016; 25:177-186. [PMID: 27748707 DOI: 10.1097/rmr.0000000000000101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Collapse
Affiliation(s)
- Ashley V Makela
- *Imaging Research Laboratories, Robarts Research Institute †Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Fluorescence molecular tomography of DiR-labeled mesenchymal stem cell implants for osteochondral defect repair in rabbit knees. Eur Radiol 2016; 27:1105-1113. [PMID: 27329519 DOI: 10.1007/s00330-016-4457-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess labelling efficiency of rabbit mesenchymal stem cells (MSCs) using the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) and detection of labelled MSCs for osteochondral defect repair in a rabbit model using fluorescence molecular tomography-X-ray computed tomography (FMT-XCT). METHODS MSCs were isolated from New Zealand White rabbits and labelled with DiR (1.25-20 μg/mL). Viability and induction of apoptosis were assessed by XTT- and Caspase-3/-7-testing. Chondrogenic potential was evaluated by measurement of glycosaminoglycans. Labelled cells and unlabeled controls (n = 3) underwent FMT-XCT imaging before and after chondrogenic differentiation. Osteochondral defects were created surgically in rabbit knees (n = 6). Unlabeled and labelled MSCs were implanted in fibrin-clots and imaged by FMT-XCT. Statistical analyses were performed using multiple regression models. RESULTS DiR-labelling of MSCs resulted in a dose-dependent fluorescence signal on planar images in trans-illumination mode. No significant reduction in viability or induction of apoptosis was detected at concentrations below 10 μg DiR/mL (p > .05); the chondrogenic potential of MSCs was not affected (p > .05). FMT-XCT of labelled MSCs in osteochondral defects showed a significant signal of the transplant (p < .05) with additional high-resolution anatomical information about its osteochondral integration. CONCLUSIONS FMT-XCT allows for detection of stem cell implantation within osteochondral regeneration processes. KEY POINTS • DiR-labelling of MSCs shows no toxic side effects or impairment of chondrogenesis. • Fluorescence molecular tomography allows for detection of MSCs for osteochondral defect repair. • FMT-XCT helps to improve evaluation of cell implantation and osteochondral regeneration processes.
Collapse
|
19
|
Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects. Sci Rep 2016; 6:25897. [PMID: 27174199 PMCID: PMC4865731 DOI: 10.1038/srep25897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.
Collapse
|
20
|
Ngen EJ, Wang L, Kato Y, Krishnamachary B, Zhu W, Gandhi N, Smith B, Armour M, Wong J, Gabrielson K, Artemov D. Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci Rep 2015; 5:13628. [PMID: 26330231 PMCID: PMC4556978 DOI: 10.1038/srep13628] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.
Collapse
Affiliation(s)
- Ethel J Ngen
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Lee Wang
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Yoshinori Kato
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Balaji Krishnamachary
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Wenlian Zhu
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Nishant Gandhi
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - Barbara Smith
- The Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Michael Armour
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - John Wong
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21287, USA
| | - Kathleen Gabrielson
- The Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| | - Dmitri Artemov
- The In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
21
|
Eichaker LR, Cho H, Duvall CL, Werfel TA, Hasty KA. Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine (Lond) 2015; 9:2203-15. [PMID: 25405797 DOI: 10.2217/nnm.14.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current treatments for osteoarthritis (OA) are largely palliative until the joints become totally dysfunctional and prosthetic replacement becomes necessary. Effective methods are needed for diagnosing OA and monitoring its progression during its early stages, when the effects of therapeutic drugs or biological agents are most likely to be effective. Theranostic nanosomes and nanoparticles have the potential to noninvasively detect, track and treat the early stages of OA. As articular cartilage does not regenerate once it is degraded, cell-based treatments aided by superparamagnetic iron oxide nanoparticle tracking are attractive future treatment modalities for the later stages of OA progression, when significant cartilage replacement is needed. This article will describe the current and future translational approaches for the detection and noninvasive treatment of degenerative OA.
Collapse
Affiliation(s)
- Lauren R Eichaker
- Department of Biomedical Engineering & Orthopaedic Surgery/Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Ruggiero A, Guenoun J, Smit H, Doeswijk GN, Klein S, Krestin GP, Kotek G, Bernsen MR. In vivo MRI mapping of iron oxide-labeled stem cells transplanted in the heart. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:487-94. [PMID: 24375904 DOI: 10.1002/cmmi.1582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/20/2013] [Accepted: 10/26/2013] [Indexed: 12/19/2022]
Abstract
In various stem cell therapy approaches poor cell survival has been recognized as an important factor limiting therapeutic efficacy. Therefore noninvasive monitoring of cell fate is warranted for developing clinically effective stem cell therapy. In this study we investigated the use of voxel-based R₂ mapping as a tool to monitor the fate of iron oxide-labeled cells in the myocardium. Mesenchymal stem cells were transduced with the luciferase gene, labeled with ferumoxide particles and injected in the myocardium of healthy rats. Cell fate was monitored over a period of 8 weeks by bioluminescence and quantitative magnetic resonance imaging. Bioluminescence signal increased during the first week followed by a steep decrease to undetectable levels during the second week. MR imaging showed a sharp increase in R₂ values shortly after injection at the injection site, followed by a very gradual decrease of R₂ over a period of 8 weeks. No difference in the appearances on R₂-weighted images was observed between living and dead cells over the entire time period studied. No significant correlation between the bioluminescence optical data and R₂ values was observed and quantitative R₂ mapping appeared not suitable for the in vivo assessment of stem cell. These results do not follow previous in vitro reports where it was proposed that living cells may be distinguished from dead cells on the basis of the R₂ relaxivities (intracellular and extracellular iron oxides). Cell proliferation, cell migration, cell death, extracellular superparamagnetic iron oxide dispersion and aggregation exhibit different relaxivities. In vivo these processes happen simultaneously, making quantification very complex, if not impossible.
Collapse
Affiliation(s)
- A Ruggiero
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
About 43 million individuals in the US currently suffer from disabilities due to arthritis. Cartilage defects are the major source of pain in the affected joints. Current treatments, whilst alleviating some of the clinical symptoms, prove insufficient to cure the underlying irreversible cartilage loss. Stem cells represent a unique source for restoration of cartilage defects. Pre-clinical and clinical trials are currently pursued to investigate the potential of various types of stem cells and stem cell derived chondrocytes to repair arthritic joints. A major challenge with all stem cell-mediated tissue regeneration approaches is death of the transplanted cells with clearance by the immune system. Our current inability to diagnose successful or unsuccessful engraftment of transplanted cells non-invasively in vivo represents a major bottleneck for the development of successful stem cell therapies. A large variety of non-invasive Magnetic Resonance (MR) imaging techniques have been developed over the last decade, which enable sensitive in vivo detection of Matrix Associated Stem Cell Implants (MASI) and early diagnosis of related complications. While initially focused on successfully harvesting cellular MR imaging approaches with easily applicable SuperParamagnetic Iron Oxide Nanoparticles (SPIO), our team began to observe details that will facilitate clinical translation. We therefore started a broader effort to define a comprehensive set of novel, clinically applicable imaging approaches for stem cell transplants in patients. We established immediately clinically applicable nanoparticle labeling techniques for tracking stem cell transplants with MR imaging; we have evaluated the long term MR signal effects of iron oxide nanoparticle labeled MASI in vivo; and we have defined distinct signal characteristics of labeled viable and apoptotic MASI. This review article will provide an overview over these efforts and discuss important implications for clinical translation.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, 725 Welch Rd, Rm 1665; Stanford, USA
| | - Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, 725 Welch Rd, Rm 1665; Stanford, USA
| |
Collapse
|
25
|
|
26
|
Khurana A, Chapelin F, Beck G, Lenkov OD, Donig J, Nejadnik H, Messing S, Derugin N, Chan RCF, Gaur A, Sennino B, McDonald DM, Kempen PJ, Tikhomirov GA, Rao J, Daldrup-Link HE. Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology 2013; 269:186-97. [PMID: 23850832 DOI: 10.1148/radiol.13130858] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine whether intravenous ferumoxytol can be used to effectively label mesenchymal stem cells (MSCs) in vivo and can be used for tracking of stem cell transplants. MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Sprague-Dawley rats (6-8 weeks old) were injected with ferumoxytol 48 hours prior to extraction of MSCs from bone marrow. Ferumoxytol uptake by these MSCs was evaluated with fluorescence, confocal, and electron microscopy and compared with results of traditional ex vivo-labeling procedures. The in vivo-labeled cells were subsequently transplanted in osteochondral defects of 14 knees of seven athymic rats and were evaluated with magnetic resonance (MR) imaging up to 4 weeks after transplantation. T2 relaxation times of in vivo-labeled MSC transplants and unlabeled control transplants were compared by using t tests. MR data were correlated with histopathologic results. RESULTS In vivo-labeled MSCs demonstrated significantly higher ferumoxytol uptake compared with ex vivo-labeled cells. With electron microscopy, iron oxide nanoparticles were localized in secondary lysosomes. In vivo-labeled cells demonstrated significant T2 shortening effects in vitro and in vivo when they were compared with unlabeled control cells (T2 in vivo, 15.4 vs 24.4 msec; P < .05) and could be tracked in osteochondral defects for 4 weeks. Histologic examination confirmed the presence of iron in labeled transplants and defect remodeling. CONCLUSION Intravenous ferumoxytol can be used to effectively label MSCs in vivo and can be used for tracking of stem cell transplants with MR imaging. This method eliminates risks of contamination and biologic alteration of MSCs associated with ex vivo-labeling procedures.
Collapse
Affiliation(s)
- Aman Khurana
- Department of Radiology and Molecular Imaging Program at Stanford, Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Communication and Statistics and Department of Materials Science and Engineering, Stanford University, Stanford, Calif; Department of Neurology, Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California San Francisco, San Francisco, Calif
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, Lee S, Gupta SN, Aflakian N, Derugin N, Messing S, Lin G, Lue TF, Pisani L, Daldrup-Link HE. Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 2013; 8:1969-83. [PMID: 23534832 DOI: 10.2217/nnm.12.198] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To develop a clinically applicable MRI technique for tracking stem cells in matrix-associated stem-cell implants, using the US FDA-approved iron supplement ferumoxytol. MATERIALS & METHODS Ferumoxytol-labeling of adipose-derived stem cells (ADSCs) was optimized in vitro. A total of 11 rats with osteochondral defects of both femurs were implanted with ferumoxytol- or ferumoxides-labeled or unlabeled ADSCs, and underwent MRI up to 4 weeks post matrix-associated stem-cell implant. The signal-to-noise ratio of different matrix-associated stem-cell implant was compared with t-tests and correlated with histopathology. RESULTS An incubation concentration of 500 µg iron/ml ferumoxytol and 10 µg/ml protamine sulfate led to significant cellular iron uptake, T2 signal effects and unimpaired ADSC viability. In vivo, ferumoxytol- and ferumoxides-labeled ADSCs demonstrated significantly lower signal-to-noise ratio values compared with unlabeled controls (p < 0.01). Histopathology confirmed engraftment of labeled ADSCs, with slow dilution of the iron label over time. CONCLUSION Ferumoxytol can be used for in vivo tracking of stem cells with MRI.
Collapse
Affiliation(s)
- Aman Khurana
- Department of Radiology & Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nejadnik H, Henning TD, Do T, Sutton EJ, Baehner F, Horvai A, Sennino B, McDonald D, Meier R, Misselwitz B, Link TM, Daldrup-Link HE. MR imaging features of gadofluorine-labeled matrix-associated stem cell implants in cartilage defects. PLoS One 2012; 7:e49971. [PMID: 23251354 PMCID: PMC3520977 DOI: 10.1371/journal.pone.0049971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
Objectives The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI) in pig knee specimen. Materials and Methods Human mesenchymal stem cells (hMSCs) were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls. Chondrogenic differentiation was induced and gene expression and histologic evaluation were performed. The proportions of spindle-shaped vs. round cells of chondrogenic pellets were compared between experimental groups using the Fisher's exact test. Labeled and unlabeled hMSCs and chondrocytes in scaffolds were implanted into cartilage defects of porcine femoral condyles and underwent MR imaging with T1- and T2-weighted SE and GE sequences. Contrast-to-noise ratios (CNR) between implants and adjacent cartilage were determined and analyzed for significant differences between different experimental groups using the Kruskal-Wallis test. Significance was assigned for p<0.017, considering a Bonferroni correction for multiple comparisons. Results Collagen type II gene expression levels were not significantly different between different groups (p>0.017). However, hMSC differentiation into chondrocytes was superior for unlabeled and GadofluorineM-Cy-labeled cells compared with Ferucarbotran-labeled cells, as evidenced by a significantly higher proportion of spindle cells in chondrogenic pellets (p<0.05). GadofluorineM-Cy-labeled hMSCs and chondrocytes showed a positive signal effect on T1-weighted images and a negative signal effect on T2-weighted images while Ferucarbotran-labeled cells provided a negative signal effect on all sequences. CNR data for both GadofluorineM-Cy-labeled and Ferucarbotran-labeled hMSCs were significantly different compared to unlabeled control cells on T1-weighted SE and T2*-weighted MR images (p<0.017). Conclusion hMSCs can be labeled by simple incubation with GadofluorineM-Cy. The labeled cells provide significant MR signal effects and less impaired chondrogenesis compared to Ferucarbotran-labeled hMSCs. Thus, GadoflurineM-Cy might represent an alternative MR cell marker to Ferucarbotran, which is not distributed any more in Europe or North America.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Stanford University, Stanford, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nejadnik H, Henning TD, Castaneda RT, Boddington S, Taubert S, Jha P, Tavri S, Golovko D, Ackerman L, Meier R, Daldrup-Link HE. Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells. Cell Transplant 2012; 21:2555-67. [PMID: 22862886 DOI: 10.3727/096368912x653156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance (MR) imaging of superparamagnetic iron oxide (SPIO)-labeled stem cells offers a noninvasive evaluation of stem cell engraftment in host organs. Excessive cellular iron load from SPIO labeling, however, impairs stem cell differentiation. The purpose of this study was to magnetically label human embryonic stem cells (hESCs) via a reduced exposure protocol that maintains a significant MR signal and no significant impairment to cellular pluripotency or differentiation potential. hESCs were labeled by simple incubation with Food and Drug Administration-approved ferumoxides, using concentrations of 50- 200 µg Fe/ml and incubation times of 3-24 h. The most reduced exposure labeling protocol that still provided a significant MR signal comparable to accepted labeling protocols was selected for subsequent studies. Labeled hESCs were compared to unlabeled controls for differences in pluripotency as studied by fluorescence staining for SSEA-1, SSEA-4, TRA-60, and TRA-81 and in differentiation capacity as studied by quantitative real-time PCR for hOCT4, hACTC1, hSOX1, and hAFP after differentiation into embryoid bodies (EBs). Subsequent MR and microscopy imaging were performed to evaluate for cellular iron distribution and long-term persistence of the label. An incubation concentration of 50 µg Fe/ml and incubation time of 3 h demonstrated a significantly reduced exposure protocol that yielded an intracellular iron uptake of 4.50 ± 0.27 pg, an iron content comparable to currently accepted SPIO labeling protocols. Labeled and unlabeled hESCs showed no difference in pluripotency or differentiation capacity. Ferumoxide-labeled hESCs demonstrated persistent MR contrast effects as embryoid bodies for 21 days. Electron microscopy confirmed persistent lysosomal storage of iron oxide particles in EBs up to 9 days, while additional microscopy visualization confirmed the iron distribution within single and multiple EBs. Labeling hESCs with ferumoxides by this tailored protocol reduces exposure of cells to the labeling agent while allowing for long-term visualization with MR imaging and the retention of cellular pluripotency and differentiation potential.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Khurana A, Nejadnik H, Gawande R, Lin G, Lee S, Messing S, Castaneda R, Derugin N, Pisani L, Lue TF, Daldrup-Link HE. Intravenous ferumoxytol allows noninvasive MR imaging monitoring of macrophage migration into stem cell transplants. Radiology 2012; 264:803-11. [PMID: 22820731 DOI: 10.1148/radiol.12112393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To develop a clinically applicable imaging technique for monitoring differential migration of macrophages into viable and apoptotic matrix-associated stem cell implants (MASIs) in arthritic knee joints. MATERIALS AND METHODS With institutional animal care and use committee approval, six athymic rats were injected with intravenous ferumoxytol (0.5 mmol iron per kilogram of body weight) to preload macrophages of the reticuloendothelial system with iron oxide nanoparticles. Forty-eight hours later, all animals received MASIs of viable adipose-derived stem cells (ADSCs) in an osteochondral defect of the right femur and mitomycin-pretreated apoptotic ADSCs in an osteochondral defect of the left femur. One additional control animal each received intravenous ferumoxytol and bilateral scaffold-only implants (without cells) or bilateral MASIs without prior ferumoxytol injection. All knees were imaged with a 7.0-T magnetic resonance (MR) imaging unit with T2-weighted fast spin-echo sequences immediately after, as well as 2 and 4 weeks after, matrix-associated stem cell implantation. Signal-to-noise ratios (SNRs) of viable and apoptotic MASIs were compared by using a linear mixed-effects model. MR imaging data were correlated with histopathologic findings. RESULTS All ADSC implants showed a slowly decreasing T2 signal over 4 weeks after matrix-associated stem cell implantation. SNRs decreased significantly over time for the apoptotic implants (SNRs on the day of matrix-associated stem cell implantation, 2 weeks after the procedure, and 4 weeks after the procedure were 16.9, 10.9, and 6.7, respectively; P = .0004) but not for the viable implants (SNRs on the day of matrix-associated stem cell implantation, 2 weeks after the procedure, and 4 weeks after the procedure were 17.7, 16.2, and 15.7, respectively; P = .2218). At 4 weeks after matrix-associated stem cell implantation, SNRs of apoptotic ADSCs were significantly lower than those of viable ADSCs (mean, 6.7 vs 15.7; P = .0013). This corresponded to differential migration of iron-loaded macrophages into MASIs. CONCLUSION Iron oxide loading of macrophages in the reticuloendothelial system by means of intravenous ferumoxytol injection can be utilized to monitor differential migration of bone marrow macrophages into viable and apoptotic MASIs in a rat model.
Collapse
Affiliation(s)
- Aman Khurana
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Henning TD, Gawande R, Khurana A, Tavri S, Mandrussow L, Golovko D, Horvai A, Sennino B, McDonald D, Meier R, Wendland M, Derugin N, Link TM, Daldrup-Link HE. Magnetic Resonance Imaging of Ferumoxide-Labeled Mesenchymal Stem Cells in Cartilage Defects: In Vitro and in Vivo Investigations. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tobias D. Henning
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Rakhee Gawande
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Aman Khurana
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Sidhartha Tavri
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Lydia Mandrussow
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Daniel Golovko
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Andrew Horvai
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Barbara Sennino
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Donald McDonald
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Reinhard Meier
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Michael Wendland
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Nikita Derugin
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Thomas M. Link
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Heike E. Daldrup-Link
- From the Department of Radiology, University of Cologne, Cologne, Germany; Department of Radiology, Stanford University, Stanford, CA; Department of Radiology, University of California, San Diego, La Jolla, CA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA; and Departments of Pathology, Anatomy, and Radiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
32
|
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, USA,Corresponding author: Heike E. Daldrup-Link, M.D., Ph.D., Associate Professor, Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA 94305-5654, Ph: (650) 723-8996 , Website: http://daldrup-link-lab.stanford.edu
| |
Collapse
|
33
|
Castaneda RT, Khurana A, Khan R, Daldrup-Link HE. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp 2011:e3482. [PMID: 22083287 DOI: 10.3791/3482] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM(-1) sec(-1) strength. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure. Our group has applied this agent in an "off label" use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.
Collapse
|
34
|
Castaneda RT, Boddington S, Henning TD, Wendland M, Mandrussow L, Liu S, Daldrup-Link H. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging. Pediatr Radiol 2011; 41:1384-92. [PMID: 21594541 DOI: 10.1007/s00247-011-2130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. OBJECTIVE To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. MATERIALS AND METHODS Triplicates of hESC were labeled by simple incubation with 50 μg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. RESULTS hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. CONCLUSION hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium.
Collapse
Affiliation(s)
- Rosalinda T Castaneda
- Pediatric Radiology, Lucile Packard Children's Hospital, Stanford School of Medicine, Stanford, CA 94305-5654, USA.
| | | | | | | | | | | | | |
Collapse
|