1
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Grudzień K, Klimeczek-Chrapusta M, Kwiatkowski S, Milczarek O. Predicting the WHO Grading of Pediatric Brain Tumors Based on Their MRI Appearance: A Retrospective Study. Cureus 2023; 15:e47333. [PMID: 38021610 PMCID: PMC10657198 DOI: 10.7759/cureus.47333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The treatment of central nervous system (CNS) tumors constitutes a significant part of a pediatric neurosurgeon's workload. The classification of such neoplasms spans many entities. These include low- and high-grade lesions, with both occurring in the population of patients under 18 years of age. Magnetic resonance imaging serves as the imaging method of choice for neoplastic lesions of the brain. Through its different modalities, such as T1, T2, T1 C+, apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), fluid-attenuated inversion recovery (FLAIR), etc., it allows the medical team to plan the therapeutic process accordingly while also possibly suggesting the specific tumor subtype prior to obtaining a definitive histological diagnosis. We conducted a retrospective study spanning 32 children treated surgically for brain tumors between July 2021 and January 2023 who had a precise histological diagnosis determined by using the 2021 WHO Classification of Tumors of the Central Nervous System. We divided them into two groups (high-grade and low-grade tumors, i.e., WHO grades 1 and 2, and grades 3 and 4, respectively) and analyzed their demographic data and preoperative MRI results. This was done using the following criteria: sub or supratentorial location of the tumor; lesion is circumscribed or infiltrating; solid, cystic, or mixed solid and cystic character of the tumor; number of compartments in cystic lesions; signal intensity (hypo-, iso-, hyperintensity sequences: T1, T2, T1 C+); presence of restricted diffusion; the largest diameter of the solid component and/or the largest diameter of the largest cyst in the transverse section. Then, we examined the results to find any correlation between the lesions' morphologies and their final assigned degree of malignancy. We found that the only radiological criteria correlating with the final WHO grade of the tumor were an infiltrative pattern of growth (25% of low-grade lesions, 75% of high-grade; p = 0.006) and the presence of a cystic component in the tumor (in 68.75% of low-grade tumors and 43.75% of high-grade tumors; p = 0.041). The only other feature close to attaining statistical significance was diffusion restriction (33.3% of low-grade tumors, 66.7% high-grade; p = 0.055). Older children tended to present with tumors of lower degrees of malignancy, and there was a predominance of female patients (21 female, 11 male).
Collapse
Affiliation(s)
- Kacper Grudzień
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| | - Maria Klimeczek-Chrapusta
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| | - Stanisław Kwiatkowski
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| | - Olga Milczarek
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| |
Collapse
|
3
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
4
|
Jaju A, Li Y, Dahmoush H, Gottardo NG, Laughlin S, Mirsky D, Panigrahy A, Sabin ND, Shaw D, Storm PB, Poussaint TY, Patay Z, Bhatia A. Imaging of pediatric brain tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee/ASPNR White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e30147. [PMID: 36519599 PMCID: PMC10466217 DOI: 10.1002/pbc.30147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022]
Abstract
Tumors of the central nervous system are the most common solid malignancies in children and the most common cause of pediatric cancer-related mortality. Imaging plays a central role in diagnosis, staging, treatment planning, and response assessment of pediatric brain tumors. However, the substantial variability in brain tumor imaging protocols across institutions leads to variability in patient risk stratification and treatment decisions, and complicates comparisons of clinical trial results. This White Paper provides consensus-based imaging recommendations for evaluating pediatric patients with primary brain tumors. The proposed brain magnetic resonance imaging protocol recommendations balance advancements in imaging techniques with the practicality of deployment across most imaging centers.
Collapse
Affiliation(s)
- Alok Jaju
- Department of Medical Imaging, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Yi Li
- UCSF Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| | - Hisham Dahmoush
- Department of Radiology, Lucile Packard Children's Hospital at Stanford, Palo Alto, California, USA
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Brain Tumour Research Programme, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Suzanne Laughlin
- Department of Diagnostic Imaging, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - David Mirsky
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dennis Shaw
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aashim Bhatia
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Krieg SM, Bernhard D, Ille S, Meyer B, Combs S, Rotenberg A, Frühwald MC. Neurosurgery for eloquent lesions in children: state-of-the-art rationale and technical implications of perioperative neurophysiology. Neurosurg Focus 2022; 53:E4. [PMID: 36455267 DOI: 10.3171/2022.9.focus22316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE In adult patients, an increasing group of neurosurgeons specialize entirely in the treatment of highly eloquent tumors, particularly gliomas. In contrast, extensive perioperative neurophysiological workup for pediatric cases has been limited essentially to epilepsy surgery. METHODS The authors discuss radio-oncological and general oncological considerations based on the current literature and their personal experience. RESULTS While several functional mapping modalities facilitate preoperative identification of cortically and subcortically located eloquent areas, not all are suited for children. Direct cortical intraoperative stimulation is impractical in many young patients due to the reduced excitability of the immature cortex. Behavioral requirements also limit the utility of functional MRI and magnetoencephalography in children. In contrast, MRI-derived tractography and navigated transcranial magnetic stimulation are available across ages. Herein, the authors review the oncological rationale of function-guided resection in pediatric gliomas including technical implications such as personalized perioperative neurophysiology, surgical strategies, and limitations. CONCLUSIONS Taken together, these techniques, despite the limitations of some, facilitate the identification of eloquent areas prior to tumor surgery and radiotherapy as well as during follow-up of residual tumors.
Collapse
Affiliation(s)
- Sandro M Krieg
- 1Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München
| | - Denise Bernhard
- 2Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technische Universität München
| | - Sebastian Ille
- 1Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München
| | - Bernhard Meyer
- 1Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technische Universität München
| | - Stephanie Combs
- 2Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technische Universität München.,3Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Sites Munich.,4Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany
| | - Alexander Rotenberg
- 5Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Michael C Frühwald
- 6Pediatrics and Adolescent Medicine, Augsburg University Hospital, Augsburg, Germany
| |
Collapse
|
6
|
MR Imaging of Pediatric Brain Tumors. Diagnostics (Basel) 2022; 12:diagnostics12040961. [PMID: 35454009 PMCID: PMC9029699 DOI: 10.3390/diagnostics12040961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Primary brain tumors are the most common solid neoplasms in children and a leading cause of mortality in this population. MRI plays a central role in the diagnosis, characterization, treatment planning, and disease surveillance of intracranial tumors. The purpose of this review is to provide an overview of imaging methodology, including conventional and advanced MRI techniques, and illustrate the MRI appearances of common pediatric brain tumors.
Collapse
|