1
|
Jian W, Dong Z, Shen X, Zheng Z, Wu Z, Shi Y, Han Y, Du J, Liu J. Machine learning-based coronary artery calcium score predicted from clinical variables as a prognostic indicator in patients referred for invasive coronary angiography. Eur Radiol 2024; 34:5633-5643. [PMID: 38337067 DOI: 10.1007/s00330-024-10629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Utilising readily available clinical variables, we aimed to develop and validate a novel machine learning (ML) model to predict severe coronary calcification, and further assessed its prognostic significance. METHODS This retrospective study enrolled patients who underwent coronary CT angiography and subsequent invasive coronary angiography. Multiple ML algorithms were used to train the models for predicting severe coronary calcification (cardiac CT-measured coronary artery calcium [CT-CAC] score ≥ 400). The ML-based CAC (ML-CAC) score derived from the ML predictive probability was stratified into quartiles for prognostic analysis. The primary endpoint was a composite of all-cause death, nonfatal myocardial infarction, or nonfatal stroke. RESULTS Overall, 5785 patients were divided into training (80%) and test sets (20%). For clinical practicability, we selected the nine-feature support vector machine model with good and satisfactory performance regarding both discrimination and calibration based on five repetitions of the 10-fold cross-validation in the training set (mean AUC = 0.715, Brier score = 0.202), and based on the test in the test set (AUC = 0.753, Brier score = 0.191). In the test set cohort (n = 1137), the primary endpoint was observed in 50 (4.4%) patients during a median 2.8 years' follow-up. The ML-CAC system was significantly associated with an increased risk of the primary endpoint (adjusted hazard ratio for trend 2.26, 95% CI 1.35-3.79, p = 0.002). There was no significant difference in the prognostic value between the ML-CAC and CT-CAC systems (C-index, 0.67 vs. 0.69; p = 0.618). CONCLUSION ML-CAC score predicted from clinical variables can serve as a novel prognostic indicator in patients referred for invasive coronary angiography. CLINICAL RELEVANCE STATEMENT In patients referred for invasive coronary angiography who have not undergone preoperative CT-measured coronary artery calcium scoring, machine learning-based coronary artery calcium score assessment can serve as an alternative for predicting the prognosis. KEY POINTS • The coronary artery calcium (CAC) score, a solid prognostic indicator, can be predicted using non-CT methods. • We developed a machine learning (ML)-CAC model utilising nine clinical variables to predict severe coronary calcification. • The ML-CAC system offers significant prognostic value in patients referred for invasive coronary angiography.
Collapse
Affiliation(s)
- Wen Jian
- Center for Coronary Artery Disease, Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Zhujun Dong
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xueqian Shen
- Center for Coronary Artery Disease, Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Ze Zheng
- Center for Coronary Artery Disease, Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Zheng Wu
- Center for Coronary Artery Disease, Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Yuchen Shi
- Center for Coronary Artery Disease, Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jinghua Liu
- Center for Coronary Artery Disease, Beijing Anzhen Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Liang X, Li X, Li G, Wang B, Liu Y, Sun D, Liu L, Zhang R, Ji S, Yan W, Yu R, Gao Z, Liu X. A machine learning approach to predicting vascular calcification risk of type 2 diabetes: A retrospective study. Clin Cardiol 2024; 47:e24264. [PMID: 38563389 PMCID: PMC10985945 DOI: 10.1002/clc.24264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Recently, patients with type 2 diabetes mellitus (T2DM) have experienced a higher incidence and severer degree of vascular calcification (VC), which leads to an increase in the incidence and mortality of vascular complications in patients with T2DM. HYPOTHESIS To construct and validate prediction models for the risk of VC in patients with T2DM. METHODS Twenty-three baseline demographic and clinical characteristics were extracted from the electronic medical record system. Ten clinical features were screened with least absolute shrinkage and selection operator method and were used to develop prediction models based on eight machine learning (ML) algorithms (k-nearest neighbor [k-NN], light gradient boosting machine, logistic regression [LR], multilayer perception [(MLP], Naive Bayes [NB], random forest [RF], support vector machine [SVM], XGBoost [XGB]). Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, and precision. RESULTS A total of 1407 and 352 patients were retrospectively collected in the training and test sets, respectively. Among the eight models, the AUC value in the NB model was higher than the other models (NB: 0.753, LGB: 0.719, LR: 0.749, MLP: 0.715, RF: 0.722, SVM: 0.689, XGB:0.707, p < .05 for all). The k-NN model achieved the highest sensitivity of 0.75 (95% confidence interval [CI]: 0.633-0.857), the MLP model achieved the highest accuracy of 0.81 (95% CI: 0.767-0.852) and specificity of 0.875 (95% CI: 0.836-0.912). CONCLUSIONS This study developed a predictive model of VC based on ML and clinical features in type 2 diabetic patients. The NB model is a tool with potential to facilitate clinicians in identifying VC in high-risk patients.
Collapse
Affiliation(s)
- Xue Liang
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
- Graduate SchoolDalian Medical UniversityDalianChina
| | - Xinyu Li
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Guosheng Li
- Laboratory Pathology DepartmentNingbo Clinical Pathology Diagnosis CenterNingboChina
| | - Bing Wang
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Yudan Liu
- Department of Neuroendocrine Pharmacology, School of PharmacyChina Medical UniversityShenyangChina
| | - Dongli Sun
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Li Liu
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Ran Zhang
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Shukun Ji
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Wanying Yan
- International Center, InferVisionBeijingChina
| | - Ruize Yu
- International Center, InferVisionBeijingChina
| | - Zhengnan Gao
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| | - Xuhan Liu
- Department of EndocrinologyDalian Municipal Central HospitalDalianChina
| |
Collapse
|
3
|
Lin Y, Lin G, Peng MT, Kuo CT, Wan YL, Cherng WJ. The Role of Artificial Intelligence in Coronary Calcium Scoring in Standard Cardiac Computed Tomography and Chest Computed Tomography With Different Reconstruction Kernels. J Thorac Imaging 2024; 39:111-118. [PMID: 37982516 DOI: 10.1097/rti.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
PURPOSE To assess the correlation of coronary calcium score (CS) obtained by artificial intelligence (AI) with those obtained by electrocardiography gated standard cardiac computed tomography (CCT) and nongated chest computed tomography (ChCT) with different reconstruction kernels. PATIENTS AND METHODS Seventy-six patients received standard CCT and ChCT simultaneously. We compared CS obtained in 4 groups: CS CCT , by the traditional method from standard CCT, 25 cm field of view, 3 mm slice thickness, and kernel filter convolution 12 (FC12); CS AICCT , by AI from the standard CCT; CS ChCTsoft , by AI from the non-gated CCT, 40 cm field of view, 3 mm slice thickness, and a soft kernel FC02; and CS ChCTsharp , by AI from CCT image with same parameters for CS ChCTsoft except for using a sharp kernel FC56. Statistical analyses included Spearman rank correlation coefficient (ρ), intraclass correlation (ICC), Bland-Altman plots, and weighted kappa analysis (κ). RESULTS The CS AICCT was consistent with CS CCT (ρ = 0.994 and ICC of 1.00, P < 0.001) with excellent agreement with respect to cardiovascular (CV) risk categories of the Agatston score (κ = 1.000). The correlation between CS ChCTsoft and CS ChCTsharp was good (ρ = 0.912, 0.963 and ICC = 0.929, 0.948, respectively, P < 0.001) with a tendency of underestimation (Bland-Altman mean difference and 95% upper and lower limits of agreements were 329.1 [-798.9 to 1457] and 335.3 [-651.9 to 1322], respectively). The CV risk category agreement between CS ChCTsoft and CS ChCTsharp was moderate (κ = 0.556 and 0.537, respectively). CONCLUSIONS There was an excellent correlation between CS CCT and CS AICCT , with excellent agreement between CV risk categories. There was also a good correlation between CS CCT and CS obtained by ChCT albeit with a tendency for underestimation and moderate accuracy in terms of CV risk assessment.
Collapse
Affiliation(s)
- Yenpo Lin
- Department of Medical Imaging and Intervention
| | - Gigin Lin
- Department of Medical Imaging and Intervention
| | | | - Chi-Tai Kuo
- Division of Cardiology, Department of Internal Medicine; Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | | | - Wen-Jin Cherng
- Division of Cardiology, Department of Internal Medicine; Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
4
|
Huang AA, Huang SY. Use of machine learning to identify risk factors for coronary artery disease. PLoS One 2023; 18:e0284103. [PMID: 37058460 PMCID: PMC10104376 DOI: 10.1371/journal.pone.0284103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death in both developed and developing nations. The objective of this study was to identify risk factors for coronary artery disease through machine-learning and assess this methodology. A retrospective, cross-sectional cohort study using the publicly available National Health and Nutrition Examination Survey (NHANES) was conducted in patients who completed the demographic, dietary, exercise, and mental health questionnaire and had laboratory and physical exam data. Univariate logistic models, with CAD as the outcome, were used to identify covariates that were associated with CAD. Covariates that had a p<0.0001 on univariate analysis were included within the final machine-learning model. The machine learning model XGBoost was used due to its prevalence within the literature as well as its increased predictive accuracy in healthcare prediction. Model covariates were ranked according to the Cover statistic to identify risk factors for CAD. Shapely Additive Explanations (SHAP) explanations were utilized to visualize the relationship between these potential risk factors and CAD. Of the 7,929 patients that met the inclusion criteria in this study, 4,055 (51%) were female, 2,874 (49%) were male. The mean age was 49.2 (SD = 18.4), with 2,885 (36%) White patients, 2,144 (27%) Black patients, 1,639 (21%) Hispanic patients, and 1,261 (16%) patients of other race. A total of 338 (4.5%) of patients had coronary artery disease. These were fitted into the XGBoost model and an AUROC = 0.89, Sensitivity = 0.85, Specificity = 0.87 were observed (Fig 1). The top four highest ranked features by cover, a measure of the percentage contribution of the covariate to the overall model prediction, were age (Cover = 21.1%), Platelet count (Cover = 5.1%), family history of heart disease (Cover = 4.8%), and Total Cholesterol (Cover = 4.1%). Machine learning models can effectively predict coronary artery disease using demographic, laboratory, physical exam, and lifestyle covariates and identify key risk factors.
Collapse
Affiliation(s)
- Alexander A. Huang
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
- Department of MD Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Samuel Y. Huang
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
5
|
Shi Y, Zheng Z, Liu Y, Wu Y, Wang P, Liu J. Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography. J Clin Med 2022; 11:jcm11236993. [PMID: 36498568 PMCID: PMC9739483 DOI: 10.3390/jcm11236993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chronic total occlusion (CTO) remains the most challenging procedure in coronary artery disease (CAD) for interventional cardiology. Although some clinical risk factors for CAD have been identified, there is no personalized prognosis test available to confidently identify patients at high or low risk for CTO CAD. This investigation aimed to use a machine learning algorithm for clinical features from clinical routine to develop a precision medicine tool to predict CTO before CAG. METHODS Data from 1473 CAD patients were obtained, including 1105 in the training cohort and 368 in the testing cohort. The baseline clinical characteristics were collected. Univariate and multivariate logistic regression analyses were conducted to identify independent risk factors that impact the diagnosis of CTO. A CTO predicting model was established and validated based on the independent predictors using a machine learning algorithm. The area under the curve (AUC) was used to evaluate the model. RESULTS The CTO prediction model was developed with the training cohort using the machine learning algorithm. Eight variables were confirmed as 'important': gender (male), neutrophil percentage (NE%), hematocrit (HCT), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), ejection fraction (EF), troponin I (TnI), and N-terminal pro-B-type natriuretic peptide (NT-proBNP). The model achieved good concordance indices of 0.724 and 0.719 in the training and testing cohorts, respectively. CONCLUSIONS An easy-to-use tool to predict CTO in patients with CAD was developed and validated. More research with larger cohorts are warranted to improve the prediction model, which can support clinician decisions on the early discerning CTO in CAD patients.
Collapse
Affiliation(s)
- Yuchen Shi
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Ze Zheng
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yanci Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yongxin Wu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ping Wang
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jinghua Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
- Correspondence: ; Fax: +86-010-64456998
| |
Collapse
|