1
|
Mortazi A, Udupa JK, Odhner D, Tong Y, Torigian DA. Post-acquisition standardization of positron emission tomography images. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1210931. [PMID: 39015756 PMCID: PMC11251705 DOI: 10.3389/fnume.2023.1210931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Purpose Tissue radiotracer activity measured from positron emission tomography (PET) images is an important biomarker that is clinically utilized for diagnosis, staging, prognostication, and treatment response assessment in patients with cancer and other clinical disorders. Using PET image values to define a normal range of metabolic activity for quantification purposes is challenging due to variations in patient-related factors and technical factors. Although the formulation of standardized uptake value (SUV) has compensated for some of these variabilities, significant non-standardness still persists. We propose an image processing method to substantially mitigate these variabilities. Methods The standardization method is similar for activity concentration (AC) PET and SUV PET images with some differences and consists of two steps. The calibration step is performed only once for each of AC PET or SUV PET, employs a set of images of normal subjects, and requires a reference object, while the transformation step is executed for each patient image to be standardized. In the calibration step, a standardized scale is determined along with 3 key image intensity landmarks defined on it including the minimum percentile intensitys min , median intensitys m , and high percentile intensitys max . s min ands m are estimated based on image intensities within the body region in the normal calibration image set. The optimal value of the maximum percentile β corresponding to the intensitys max is estimated via an optimization process by using the reference object to optimally separate the highly variable high uptake values from the normal uptake intensities. In the transformation step, the first two landmarks-the minimum percentile intensityp α ( I ) , and the median intensityp m ( I ) -are found for the given image I for the body region, and the high percentile intensityp β ( I ) is determined corresponding to the optimally estimated high percentile value β . Subsequently, intensities of I are mapped to the standard scale piecewise linearly for different segments. We employ three strategies for evaluation and comparison with other standardization methods: (i) comparing coefficient of variationC V O of mean intensity within test objects O across different normal test subjects before and after standardization; (ii) comparing mean absolute difference (MD O ) of mean intensity within test objects O across different subjects in repeat scans before and after standardization; (iii) comparingC V O of mean intensity across different normal subjects before and after standardization where the scans came from different brands of scanners. Results Our data set consisted of 84 FDG-PET/CT scans of the body torso including 38 normal subjects and two repeat-scans of 23 patients. We utilized one of two objects-liver and spleen-as a reference object and the other for testing. The proposed standardization method reducedC V O andMD O by a factor of 3-8 in comparison to other standardization methods and no standardization. Upon standardization by our method, the image intensities (both for AC and SUV) from two different brands of scanners become statistically indistinguishable, while without standardization, they differ significantly and by a factor of 3-9. Conclusions The proposed method is automatic, outperforms current standardization methods, and effectively overcomes the residual variation left over in SUV and inter-scanner variations.
Collapse
Affiliation(s)
- Aliasghar Mortazi
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jayaram K. Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Dewey Odhner
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Drew A. Torigian
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Tong Y, Udupa JK, Odhner D, Wu C, Schuster SJ, Torigian DA. Disease quantification on PET/CT images without explicit object delineation. Med Image Anal 2018; 51:169-183. [PMID: 30453165 DOI: 10.1016/j.media.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE The derivation of quantitative information from images in a clinically practical way continues to face a major hurdle because of image segmentation challenges. This paper presents a novel approach, called automatic anatomy recognition-disease quantification (AAR-DQ), for disease quantification (DQ) on positron emission tomography/computed tomography (PET/CT) images. This approach explores how to decouple DQ methods from explicit dependence on object (e.g., organ) delineation through the use of only object recognition results from our recently developed automatic anatomy recognition (AAR) method to quantify disease burden. METHOD The AAR-DQ process starts off with the AAR approach for modeling anatomy and automatically recognizing objects on low-dose CT images of PET/CT acquisitions. It incorporates novel aspects of model building that relate to finding an optimal disease map for each organ. The parameters of the disease map are estimated from a set of training image data sets including normal subjects and patients with metastatic cancer. The result of recognition for an object on a patient image is the location of a fuzzy model for the object which is optimally adjusted for the image. The model is used as a fuzzy mask on the PET image for estimating a fuzzy disease map for the specific patient and subsequently for quantifying disease based on this map. This process handles blur arising in PET images from partial volume effect entirely through accurate fuzzy mapping to account for heterogeneity and gradation of disease content at the voxel level without explicitly performing correction for the partial volume effect. Disease quantification is performed from the fuzzy disease map in terms of total lesion glycolysis (TLG) and standardized uptake value (SUV) statistics. We also demonstrate that the method of disease quantification is applicable even when the "object" of interest is recognized manually with a simple and quick action such as interactively specifying a 3D box ROI. Depending on the degree of automaticity for object and lesion recognition on PET/CT, DQ can be performed at the object level either semi-automatically (DQ-MO) or automatically (DQ-AO), or at the lesion level either semi-automatically (DQ-ML) or automatically. RESULTS We utilized 67 data sets in total: 16 normal data sets used for model building, and 20 phantom data sets plus 31 patient data sets (with various types of metastatic cancer) used for testing the three methods DQ-AO, DQ-MO, and DQ-ML. The parameters of the disease map were estimated using the leave-one-out strategy. The organs of focus were left and right lungs and liver, and the disease quantities measured were TLG, SUVMean, and SUVMax. On phantom data sets, overall error for the three parameters were approximately 6%, 3%, and 0%, respectively, with TLG error varying from 2% for large "lesions" (37 mm diameter) to 37% for small "lesions" (10 mm diameter). On patient data sets, for non-conspicuous lesions, those overall errors were approximately 19%, 14% and 0%; for conspicuous lesions, these overall errors were approximately 9%, 7%, 0%, respectively, with errors in estimation being generally smaller for liver than for lungs, although without statistical significance. CONCLUSIONS Accurate disease quantification on PET/CT images without performing explicit delineation of lesions is feasible following object recognition. Method DQ-MO generally yields more accurate results than DQ-AO although the difference is statistically not significant. Compared to current methods from the literature, almost all of which focus only on lesion-level DQ and not organ-level DQ, our results were comparable for large lesions and were superior for smaller lesions, with less demand on training data and computational resources. DQ-AO and even DQ-MO seem to have the potential for quantifying disease burden body-wide routinely via the AAR-DQ approach.
Collapse
Affiliation(s)
- Yubing Tong
- Medical Image Processing group, Department of Radiology, 3710 Hamilton Walk, Goddard Building, 6th Floor, Philadelphia, PA 19104, United States
| | - Jayaram K Udupa
- Medical Image Processing group, Department of Radiology, 3710 Hamilton Walk, Goddard Building, 6th Floor, Philadelphia, PA 19104, United States.
| | - Dewey Odhner
- Medical Image Processing group, Department of Radiology, 3710 Hamilton Walk, Goddard Building, 6th Floor, Philadelphia, PA 19104, United States
| | - Caiyun Wu
- Medical Image Processing group, Department of Radiology, 3710 Hamilton Walk, Goddard Building, 6th Floor, Philadelphia, PA 19104, United States
| | - Stephen J Schuster
- Abramson Cancer Center, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Drew A Torigian
- Medical Image Processing group, Department of Radiology, 3710 Hamilton Walk, Goddard Building, 6th Floor, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Impact of Computer-Aided CT and PET Analysis on Non-invasive T Staging in Patients with Lung Cancer and Atelectasis. Mol Imaging Biol 2018; 20:1044-1052. [PMID: 29679299 DOI: 10.1007/s11307-018-1196-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Tumor delineation within an atelectasis in lung cancer patients is not always accurate. When T staging is done by integrated 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)-positron emission tomography (PET)/X-ray computer tomography (CT), tumors of neuroendocrine differentiation and slowly growing tumors can present with reduced FDG uptake, thus aggravating an exact T staging. In order to further exhaust information derived from [18F]FDG-PET/CT, we evaluated the impact of CT density and maximum standardized uptake value (SUVmax) for the classification of different tumor subtypes within a surrounding atelectasis, as well as possible cutoff values for the differentiation between the primary tumor and atelectatic lung tissue. PROCEDURES Seventy-two patients with histologically proven lung cancer and adjacent atelectasis were investigated. Non-contrast-enhanced [18F]FDG-PET/CT was performed within 2 weeks before surgery/biopsy. Boundaries of the primary within the atelectasis were determined visually on the basis of [18F]FDG uptake; CT density was quantified manually within each primary and each atelectasis. RESULTS CT density of the primary (36.4 Hounsfield units (HU) ± 6.2) was significantly higher compared to that of atelectatic lung (24.3 HU ± 8.3; p < 0.01), irrespective of the histological subtype. The discrimination between different malignant tumors using density analysis failed. SUVmax was increased in squamous cell carcinomas compared to adenocarcinomas. Irrespective of the malignant subtype, a possible cutoff value of 24 HU may help to exclude the presence of a primary in lesions below 24 HU, whereas a density above a threshold of 40 HU can help to exclude atelectatic lung. CONCLUSION Density measurements in patients with lung cancer and surrounding atelectasis may help to delineate the primary tumor, irrespective of the specific lung cancer subtype. This could improve T staging and radiation treatment planning (RTP) without additional application of a contrast agent in CT, or an additional magnetic resonance imaging (MRI), even in cases of lung tumors of neuroendocrine differentiation or in slowly growing tumors with less avidity to [18F]FDG.
Collapse
|
4
|
Torigian DA, Green-McKenzie J, Liu X, Shofer FS, Werner T, Smith CE, Strasser AA, Moghbel MC, Parekh AH, Choi G, Goncalves MD, Spaccarelli N, Gholami S, Kumar PS, Tong Y, Udupa JK, Mesaros C, Alavi A. A Study of the Feasibility of FDG-PET/CT to Systematically Detect and Quantify Differential Metabolic Effects of Chronic Tobacco Use in Organs of the Whole Body-A Prospective Pilot Study. Acad Radiol 2017; 24:930-940. [PMID: 27769824 DOI: 10.1016/j.acra.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 02/03/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to assess the feasibility of 18F-fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) to systematically detect and quantify differential effects of chronic tobacco use in organs of the whole body. MATERIALS AND METHODS Twenty healthy male subjects (10 nonsmokers and 10 chronic heavy smokers) were enrolled. Subjects underwent whole-body FDG-PET/CT, diagnostic unenhanced chest CT, mini-mental state examination, urine testing for oxidative stress, and serum testing. The organs of interest (thyroid, skin, skeletal muscle, aorta, heart, lung, adipose tissue, liver, spleen, brain, lumbar spinal bone marrow, and testis) were analyzed on FDG-PET/CT images to determine their metabolic activities using standardized uptake value (SUV) or metabolic volumetric product (MVP). Measurements were compared between subject groups using two-sample t tests or Wilcoxon rank-sum tests as determined by tests for normality. Correlational analyses were also performed. RESULTS FDG-PET/CT revealed significantly decreased metabolic activity of lumbar spinal bone marrow (MVPmean: 29.8 ± 9.7 cc vs 40.8 ± 11.6 cc, P = 0.03) and liver (SUVmean: 1.8 ± 0.2 vs 2.0 ± 0.2, P = 0.049) and increased metabolic activity of visceral adipose tissue (SUVmean: 0.35 ± 0.10 vs 0.26 ± 0.06, P = 0.02) in chronic smokers compared to nonsmokers. Normalized visceral adipose tissue volume was also significantly decreased (P = 0.04) in chronic smokers. There were no statistically significant differences in the metabolic activity of other assessed organs. CONCLUSIONS Subclinical organ effects of chronic tobacco use are detectable and quantifiable on FDG-PET/CT. FDG-PET/CT may, therefore, play a major role in the study of systemic toxic effects of tobacco use in organs of the whole body for clinical or research purposes.
Collapse
|
5
|
Wang H, Udupa JK, Odhner D, Tong Y, Zhao L, Torigian DA. Automatic anatomy recognition in whole-body PET/CT images. Med Phys 2016; 43:613. [PMID: 26745953 DOI: 10.1118/1.4939127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., "Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images," Med. Image Anal. 18, 752-771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. METHODS The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process, to bring performance to the level achieved on diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT and other derived images, thus truly separating the modality-independent object assembly anatomy from modality-specific tissue property portrayal in the image. RESULTS Key ways of combining the above three basic ideas lead them to 15 different strategies for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors compare the recognition performance among these 15 strategies on 18 objects from the thorax, abdomen, and pelvis in object localization error and size estimation error. Particularly on texture membership images, object localization is within three voxels on whole-body low-dose CT images and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on direct body-region-wise PET images, localization error within 3 voxels seems possible. CONCLUSIONS The previous body-region-wise approach can be extended to whole-body torso with similar object localization performance. Combined use of image texture and intensity property yields the best object localization accuracy. In both body-region-wise and whole-body approaches, recognition performance on low-dose CT images reaches levels previously achieved on diagnostic CT images. The best object recognition strategy varies among objects; the proposed framework however allows employing a strategy that is optimal for each object.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jayaram K Udupa
- Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dewey Odhner
- Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yubing Tong
- Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Liming Zhao
- Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Drew A Torigian
- Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
6
|
Flechsig P, Mehndiratta A, Haberkorn U, Kratochwil C, Giesel FL. PET/MRI and PET/CT in Lung Lesions and Thoracic Malignancies. Semin Nucl Med 2015; 45:268-81. [DOI: 10.1053/j.semnuclmed.2015.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Affiliation(s)
- Roy A Raad
- Department of Radiology, NYU Langone Medical Center, NY.
| | | | | |
Collapse
|
8
|
A New Year Brings a New Beginning and New Voices. J Thorac Imaging 2013; 28:1. [DOI: 10.1097/rti.0b013e318277ce9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|