1
|
Dai XS, Wei QH, Guo X, Ding Y, Yang XQ, Zhang YX, Xu XY, Li C, Chen Y. Ferulic acid, ligustrazine, and tetrahydropalmatine display the anti-proliferative effect in endometriosis through regulating Notch pathway. Life Sci 2023; 328:121921. [PMID: 37429417 DOI: 10.1016/j.lfs.2023.121921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
AIMS With an ambiguous anti-proliferative mechanism, the combination of ferulic acid, ligustrazine, and tetrahydropalmatine (FLT) shows good anti-endometriosis (EMS) activity. In EMS, the expression of Notch pathway and its role in proliferation are not yet unclear. In this study, we sought to uncover the role of Notch pathway's effect and FLT's anti-proliferative mechanism on EMS proliferation. MAIN METHODS In autograft and allograft EMS models, the proliferating markers (Ki67, PCNA), Notch pathway, and the effect of FLT on them were detected. Then, the anti-proliferative influence of FLT was measured in vitro. The proliferating ability of endometrial cells was investigated with a Notch pathway activator (Jagged 1 or VPA) or inhibitor (DAPT) alone, or in combination with FLT separately. KEY FINDINGS FLT presented the inhibitory effect on ectopic lesions in 2 EMS models. The proliferating markers and Notch pathway were promoted in ectopic endometrium, but FLT showed the counteraction. Meantime, FLT restrained the endometrial cell growth and clone formation along with a reduction in Ki67 and PCNA. Jagged 1 and VPA stimulated the proliferation. On the contrary, DAPT displayed the anti-proliferating effect. Furthermore, FLT exhibited an antagonistic effect on Jagged 1 and VPA by downregulating Notch pathway and restraining proliferation. FLT also displayed a synergistic effect on DAPT. SIGNIFICANCE This study indicated that the overexpressing Notch pathway induced EMS proliferation. FLT attenuated the proliferation by inhibiting Notch pathway.
Collapse
Affiliation(s)
- Xue-Shan Dai
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Qing-Hua Wei
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Xin Guo
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Yi Ding
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Xiao-Qian Yang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Yu-Xin Zhang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Xiao-Yu Xu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Cong Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Chen
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Zhang Z, Zhang M, Sun Y, Li M, Chang C, Liu W, Zhu X, Wei L, Wen F, Liu Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci Rep 2023; 13:5812. [PMID: 37037844 PMCID: PMC10085980 DOI: 10.1038/s41598-023-32906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Adipose derived stem cells (ADSCs) are popular in regenerative medicine due to their easy availability, low immunogenicity and lack of controversy regarding their ethical debate use. Although ADSCs can repair nerve damage, the oxidative microenvironment of damaged tissue can induce apoptosis of transplanted stem cells, which weakens the therapeutic efficacy of ADSCs. Resveratrol (Res) is a type of natural polyphenol compound that regulates the proliferation, senescence and differentiation of stem cells. Therefore, we investigated whether incubation of ADSCs with Res improves their to promote peripheral nerve regeneration. ADSCs were cultured in vitro and treated with H2O2 to establish an apoptosis model. The control, H2O2 and Res groups were set up. The cell survival rate was detected by the CCK-8 method. The TUNEL assay was used to detect the apoptosis of the cells. qRT‒PCR was used to analyze the expression of apoptosis-related mRNA, and the effect of Res on the proliferation of ADSCs was investigated. In vivo, 40 SD rats were randomly divided into the control, model, ADSCs and ADSC + Res groups, with 13 rats in each group. The sciatic nerve injury rat model was established by the clamp method. Gait was observed on Days 7, 14, 21, and 28. Sciatic nerve regeneration was detected on Day 28. Res had no effect on the proliferation of ADSCs, and the TUNEL assay confirmed that Res pretreatment could significantly improve H2O2-induced apoptosis in ADSCs. Compared with the control group, caspase-3, Bax and Bcl-2 expression levels were significantly increased in the H2O2 group. Compared with the H2O2 group caspase-3 and Bax expression levels were significantly decreased, and Bcl-2 expression levels were significantly increased in ADSCs + Res group. At 4 weeks after surgery, the functional index of the sciatic nerve in the ADSCs + Res group was significantly higher than that in the model group. On Day 28, the average density of the sciatic nerve myelin sheath in the ADSCs + Res group was significantly increased compared with that in the model group, and Nissl staining showed that the number of motor neurons in the spinal cord was significant compared with that in the model group. Compared with the control group, the wet weight ratio of gastrocnemius muscle and muscle fiber area in ADSCs + Res group were significantly increased. Res enhanced the ability of ADSCs to promote sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
3
|
Wang Y, Xue Y, Guo HD. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Front Pharmacol 2022; 13:1013740. [PMID: 36330092 PMCID: PMC9622800 DOI: 10.3389/fphar.2022.1013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality, in which myocardial infarction accounts for 46% of total deaths. Although good progress has been achieved in medication and interventional techniques, a proven method to repair the damaged myocardium has not yet been determined. Stem cell therapy for damaged myocardial repair has evolved into a promising treatment for ischemic heart disease. However, low retention and poor survival of the injected stem cells are the major obstacles to achieving the intended therapeutic effects. Chinese botanical and other natural drug substances are a rich source of effective treatment for various diseases. As such, numerous studies have revealed the role of Chinese medicine in stem cell therapy for myocardial infarction treatment, including promoting proliferation, survival, migration, angiogenesis, and differentiation of stem cells. Here, we discuss the potential and limitations of stem cell therapy, as well as the regulatory mechanism of Chinese medicines underlying stem cell therapy. We focus on the evidence from pre-clinical trials and clinical practices, and based on traditional Chinese medicine theories, we further summarize the mechanisms of Chinese medicine treatment in stem cell therapy by the commonly used prescriptions. Despite the pre-clinical evidence showing that traditional Chinese medicine is helpful in stem cell therapy, there are still some limitations of traditional Chinese medicine therapy. We also systematically assess the detailed experimental design and reliability of included pharmacological research in our review. Strictly controlled animal models with multi-perspective pharmacokinetic profiles and high-grade clinical evidence with multi-disciplinary efforts are highly demanded in the future.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Wen Y, Zhang Z, Cai Z, Liu B, Wu Z, Liu Y. Ligustrazine-Loaded Borneol Liposome Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. ACS Biomater Sci Eng 2022; 8:4930-4941. [PMID: 36227861 DOI: 10.1021/acsbiomaterials.2c00847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our team's pharmacological and clinical trials proved that ligustrazine/borneol spray had a definite effect on ischemic stroke (IS). To solve the shortcomings of ligustrazine/borneol spray, such as low bioavailability, short half-life, and poor compatibility between borneol and ligustrazine, ligustrazine-loaded borneol liposomes (LIP@TMP) were successfully prepared by a thin-film ultrasonication method. The average particle size of LIP@TMP was 282.4 ± 3.6 nm, the drug loading rate was 14.5 ± 0.6%, and the entrapment efficiency was 42.7 ± 1.0%, which had excellent stability and sustained release ability. In addition, live/dead fluorescent staining and the CCK-8 test confirmed that LIP@TMP had good biocompatibility. Moreover, middle cerebral artery occlusion (MCAO) rat model experiments further demonstrated that LIP@TMP could significantly alleviate cerebral ischemia and reperfusion injury by improving neurological scores, reducing cerebral infarct volume, promoting neurogenesis, inhibiting inflammation, and reducing tissue damage. In addition, LIP@TMP enhanced neuronal marker doublecortin (DCX) and neuronal nuclei (NEUN), inhibited inflammatory factors (TNF-α and IL-1β), and reduced apoptosis signal molecules (TUNEL and caspase-3). The findings of this study suggested that the prepared LIP@TMP had tremendous potential for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Wen
- Guangzhou University of Chinese Medicine, Guangzhou510405, China
| | - Zuxian Zhang
- Guangzhou University of Chinese Medicine, Guangzhou510405, China
| | - Zhongmou Cai
- Guangzhou University of Chinese Medicine, Guangzhou510405, China
| | - Baoning Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou510405, China
| | - Zhehao Wu
- Guangzhou University of Chinese Medicine, Guangzhou510405, China
| | - Yude Liu
- Guangzhou University of Chinese Medicine, Guangzhou510405, China.,First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou510405, China
| |
Collapse
|
5
|
Chen L, Cheng L, Wang Z, Zhang J, Mao X, Liu Z, Zhang Y, Cui W, Sun X. Conditioned medium-electrospun fiber biomaterials for skin regeneration. Bioact Mater 2020; 6:361-374. [PMID: 32954054 PMCID: PMC7481508 DOI: 10.1016/j.bioactmat.2020.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
Conditioned medium (CM) contains variety of factors secreted by cells, which directly regulate cellular processes, showing tremendous potential in regenerative medicine. Here, for the first time, we proposed a novel regenerative therapy mediated by biodegradable micro-nano electrospun fibers loaded with highly active conditioned medium of adipose-derived stem cells (ADSC-CM). ADSC-CM was successfully loaded into the nanofibers with biological protection and controllable sustained-release properties by emulsion electrospinning and protein freeze-drying technologies. In vitro, ADSC-CM released by the fibers accelerated the migration rate of fibroblasts; inhibited the over proliferation of fibroblasts by inducing apoptosis and damaging cell membrane; in addition, ADSC-CM inhibited the transformation of fibroblasts into myofibroblasts and suppressed excessive production of extracellular matrix (ECM). In vivo, the application of CM-biomaterials significantly accelerated wound closure and improved regeneration outcome, showing superior pro-regenerative performance. This study pioneered the application of CM-biomaterials in regenerative medicine, and confirmed the practicability and significant biological effects of this innovative biomaterials.
Collapse
Affiliation(s)
- Lu Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Liying Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Zhimo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China
| |
Collapse
|