Zhang C, Feng W. Assessment of tissue-specific changes in structure and function induced by in vivo skin/skull optical clearing techniques.
Lasers Surg Med 2021;
54:447-458. [PMID:
34750826 DOI:
10.1002/lsm.23489]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND OBJECTIVES
Newly developed in vivo skin and skull optical clearing techniques can greatly improve the optical imaging performance, showing great advantages and clinical prospects. However, there is a poor understanding of in vivo optical clearing-induced changes in the skin and skull.
MATERIALS AND METHODS
Here, we employed in vivo skin/skull optical clearing techniques to improve the optical coherence tomography (OCT) imaging quality. And we also used polarization-sensitive OCT to monitor the dynamic changes in the polarization characteristics of the skin and skull during in vivo optical clearing processes. Two-photon imaging was used to evaluate changes in tissue barrier function and structure. Additionally, Raman spectra were employed for assessing the changes of each component in the skin and skull before and after optical clearing treatment.
RESULTS
The results indicated that the polarization states of the skin and skull were altered with the usages of optical clearing agents. And the barrier permeability and collagen fiber distribution of them became disordered. Furthermore, the Raman spectra of tissue demonstrated that the applications of in vivo tissue optical clearing methods could lead to the reduction of proteins, lipids, and inorganic salts in these two organs. Interestingly, after recovery treatment, the structure and function of the skin and skull could almost recover to the initial states.
CONCLUSION
In vivo tissue optical clearing can lead to changes in the structure and function of tissue, which was reversible to some extent. This study plays an important role in revealing the underlying mechanisms of tissue optical clearing techniques; moreover, it is conducive to the development and optimization of a novel in vivo tissue optical clearing approaches in future.
Collapse