1
|
Fuchs A, Bartolf-Kopp M, Böhm H, Straub A, Kübler AC, Linz C, Gbureck U. Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects. Clin Oral Investig 2023; 27:3199-3209. [PMID: 36864278 PMCID: PMC10264493 DOI: 10.1007/s00784-023-04932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Synthetic bone substitutes which can be adapted preoperatively and patient specific may be helpful in various bony defects in the field of oral- and maxillofacial surgery. For this purpose, composite grafts made of self-setting and oil-based calcium phosphate cement (CPC) pastes, which were reinforced with 3D-printed polycaprolactone (PCL) fiber mats were manufactured. MATERIALS AND METHODS Bone defect models were acquired using patient data from real defect situations of patients from our clinic. Using a mirror imaging technique, templates of the defect situation were fabricated via a commercially available 3D-printing system. The composite grafts were assembled layer by layer, aligned on top of these templates and fitted into the defect situation. Besides, PCL-reinforced CPC samples were evaluated regarding their structural and mechanical properties via X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), and 3-point-bending testing. RESULTS The process sequence including data acquisition, template fabrication, and manufacturing of patient specific implants proved to be accurate and uncomplicated. The individual implants consisting mainly of hydroxyapatite and tetracalcium phosphate displayed good processability and a high precision of fit. The mechanical properties of the CPC cements in terms of maximum force and stress load to material fatigue were not negatively affected by the PCL fiber reinforcement, whereas clinical handling properties increased remarkably. CONCLUSION PCL fiber reinforcement of CPC cements enables the production of very freely modelable three-dimensional implants with adequate chemical and mechanical properties for bone replacement applications. CLINICAL RELEVANCE The complex bone morphology in the region of the facial skull often poses a great challenge for a sufficient reconstruction of bony defects. A full-fledged bone replacement here often requires the replication of filigree three-dimensional structures partly without support from the surrounding tissue. With regard to this problem, the combination of smooth 3D-printed fiber mats and oil-based CPC pastes represents a promising method for fabricating patient specific degradable implants for the treatment of various craniofacial bone defects.
Collapse
Affiliation(s)
- Andreas Fuchs
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Hartmut Böhm
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
2
|
Pepelnjak T, Stojšić J, Sevšek L, Movrin D, Milutinović M. Influence of Process Parameters on the Characteristics of Additively Manufactured Parts Made from Advanced Biopolymers. Polymers (Basel) 2023; 15:polym15030716. [PMID: 36772018 PMCID: PMC9922018 DOI: 10.3390/polym15030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, additive manufacturing (AM) has become a reliable tool for prototyping and low-volume production. In recent years, the market share of such products has increased rapidly as these manufacturing concepts allow for greater part complexity compared to conventional manufacturing technologies. Furthermore, as recyclability and biocompatibility have become more important in material selection, biopolymers have also become widely used in AM. This article provides an overview of AM with advanced biopolymers in fields from medicine to food packaging. Various AM technologies are presented, focusing on the biopolymers used, selected part fabrication strategies, and influential parameters of the technologies presented. It should be emphasized that inkjet bioprinting, stereolithography, selective laser sintering, fused deposition modeling, extrusion-based bioprinting, and scaffold-free printing are the most commonly used AM technologies for the production of parts from advanced biopolymers. Achievable part complexity will be discussed with emphasis on manufacturable features, layer thickness, production accuracy, materials applied, and part strength in correlation with key AM technologies and their parameters crucial for producing representative examples, anatomical models, specialized medical instruments, medical implants, time-dependent prosthetic features, etc. Future trends of advanced biopolymers focused on establishing target-time-dependent part properties through 4D additive manufacturing are also discussed.
Collapse
Affiliation(s)
- Tomaž Pepelnjak
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-47-71-734
| | - Josip Stojšić
- Mechanical Engineering Faculty in Slavonski Brod, University of Slavonski Brod, Trg Ivane Brlić Mažuranić 2, 35000 Slavonski Brod, Croatia
| | - Luka Sevšek
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Dejan Movrin
- Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Mladomir Milutinović
- Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Is the Mirroring Technology Reliable in the Use of Computer-Aided Design for Orbital Reconstruction? Three-Dimensional Analysis of Asymmetry in the Orbits. Plast Reconstr Surg 2022; 149:453-460. [PMID: 35077421 DOI: 10.1097/prs.0000000000008735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reconstruction of the orbital area remains a challenge in many cases. The recently introduced mirroring technology provides surgeons with patient-specific information for accurate orbital reconstruction; its premise is that the three-dimensional anatomy of craniofacial bone is symmetric. The purpose of this study was to verify this premise of the mirroring technology by assessing three-dimensional asymmetry. METHODS Facial computed tomographic data of 104 patients were imported into iPlan software. Four reference points (i.e., zygomaticofrontal suture, frontomaxillary suture, infraorbital foramen, and optic canal) were set, and the three-dimensional distances from these points to the anterior nasal spine on the mirroring plane were calculated. In addition, the orbital cavity volume and the three-dimensional distances from point optic canal to the other reference points were calculated for the assessment of the orbit anatomy. Three plastic surgeons performed these processes independently. RESULTS No statistically significant difference was found in the three-dimensional distances between anterior nasal spine and the four reference points bilaterally. Also, no statistically significant difference in the three-dimensional distances between the point representing the optic canal and other reference points was detected bilaterally. Orbital cavity volume showed a mild asymmetry, but the discrepancy was acceptable for computer-aided design applications. For all reference points, the maximum value of the 95 percent CI was less than 1.4 mm. CONCLUSIONS The three-dimensional location of the orbits and the three-dimensional anatomy of the orbit were symmetric. Thus, the mirroring technology could be a reliable first step in computer-aided design, computer-assisted surgery, and navigation-assisted surgery. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
4
|
Pabst A, Goetze E, Thiem DGE, Bartella AK, Seifert L, Beiglboeck FM, Kröplin J, Hoffmann J, Zeller AN. 3D printing in oral and maxillofacial surgery: a nationwide survey among university and non-university hospitals and private practices in Germany. Clin Oral Investig 2021; 26:911-919. [PMID: 34278522 DOI: 10.1007/s00784-021-04073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Oral and maxillofacial surgery (OMFS) has undergone pioneering progress through the development of three-dimensional (3D) printing technologies. The aim of this study was to evaluate the use of 3D printing at OMFS university and non-university hospitals and private practices in Germany. MATERIALS AND METHODS For explorative assessment, a dynamic online questionnaire containing 10-22 questions about the current use of 3D printing and the reasons behind it was sent to OMFS university and non-university hospitals and private practices in Germany by the study group from the German Association of Oral and Maxillofacial Surgery (DGMKG). RESULTS In total, 156 participants responded from university (23 [14.7%]) and non-university hospitals (19 [12.2%]) and private practices without (85 [50.5%]) and with 29 (18.6%) inpatient treatment facility. Highest applications of 3D printing were in implantology (57%), microvascular bone reconstructions (25.6%), and orthognathics (21.1%). Among the participants, 37.8% reportedly were not using 3D printing. Among the hospitals and private practices, 21.1% had their own 3D printer, and 2.5% shared it with other departments. The major reason for not having a 3D printer was poor cost efficiency (37.6%). Possessing a 3D printer was motivated by independence from external providers (91.3%) and rapid template production (82.6%). The preferred printing methods were stereolithography (69.4 %) and filament printing (44.4%). CONCLUSIONS OMFS 3D printing is established in Germany with a wide range of applications. CLINICAL RELEVANCE The prevalence of 3D printing in hospitals and private practices is moderate. This may be enhanced by future innovations including improved cost efficiency.
Collapse
Affiliation(s)
- Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany.
| | - Elisabeth Goetze
- Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Glückstr. 11, 91054, Erlangen, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Alexander K Bartella
- Department of Oral and Maxillofacial Surgery, University Hospital Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Lukas Seifert
- Department of Oral, Cranio Maxillofacial and Facial Plastic Surgery, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60528, Frankfurt am Main, Germany
| | - Fabian M Beiglboeck
- Department of Oral and Maxillofacial Surgery, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.,MAM Research Group, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Juliane Kröplin
- Department of Oral and Maxillofacial Surgery, Helios Hospital Schwerin, Wismarsche Str. 393-397, 19049, Schwerin, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Clinic Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexander-N Zeller
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Tarassoli SP, Shield ME, Allen RS, Jessop ZM, Dobbs TD, Whitaker IS. Facial Reconstruction: A Systematic Review of Current Image Acquisition and Processing Techniques. Front Surg 2020; 7:537616. [PMID: 33365327 PMCID: PMC7750399 DOI: 10.3389/fsurg.2020.537616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Plastic and reconstructive surgery is based on a culmination of technological advances, diverse techniques, creative adaptations and strategic planning. 3D imaging is a modality that encompasses several of these criteria while encouraging the others. Imaging techniques used in facial imaging come in many different modalities and sub-modalities which is imperative for such a complex area of the body; there is a clear clinical need for hyper-specialized practice. However, with this complexity comes variability and thus there will always be an element of bias in the choices made for imaging techniques. Aims and Objectives: The aim of this review is to systematically analyse the imaging techniques used in facial reconstruction and produce a comprehensive summary and comparison of imaging techniques currently available, including both traditional and novel methods. Methods: The systematic search was performed on EMBASE, PubMed, Scopus, Web of Science and Cochrane reviews using keywords such as "image technique/acquisition/processing," "3-Dimensional," "Facial," and "Reconstruction." The PRISMA guidelines were used to carry out the systematic review. Studies were then subsequently collected and collated; followed by a screening and exclusion process with a final full-text review for further clarification in regard to the selection criteria. A risk of bias assessment was also carried out on each study systematically using the respective tool in relation to the study in question. Results: From the initial 6,147 studies, 75 were deemed to fulfill all selection criteria and selected for meta-analysis. The majority of papers involved the use of computer tomography, though the use of magnetic resonance and handheld scanners using sonography have become more common in the field. The studies ranged in patient population, clinical indication. Seminal papers were highlighted within the group of papers for further analysis. Conclusions: There are clearly many factors that affect the choice of image acquisition techniques and their potential at being ideal for a given role. Ultimately the surgical team's choice will guide much of the decision, but it is crucial to be aware of not just the diagnostic ability of such modalities, but their treatment possibilities as well.
Collapse
Affiliation(s)
- Sam P. Tarassoli
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Matthew E. Shield
- College of Medicine, Swansea University Medical School, Swansea, United Kingdom
| | - Rhian S. Allen
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Zita M. Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Thomas D. Dobbs
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Iain S. Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
6
|
Singh DD, Schorn L, Strong EB, Grant M, Schramm A, Hufendiek K, Gellrich NC, Rana M. Computer-Assisted Secondary Orbital Reconstruction. Craniomaxillofac Trauma Reconstr 2020; 14:29-35. [PMID: 33613833 DOI: 10.1177/1943387520935004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Study Design This study presents a case-control study of 33 patients who underwent secondary orbital reconstruction, evaluating techniques and outcome. Objective Adequate functional and aesthetical appearance are main goals for secondary orbital reconstruction. Insufficient premorbid orbital reconstruction can result in hypoglobus, enophthalmos, and diplopia. Computer-assisted surgery and the use of patient-specific implants (PSIs) is widely described in the literature. The authors evaluate the use of selective laser-melted PSIs and hypothesize that PSIs are an excellent option for secondary orbital reconstruction. Methods The sample was composed of 33 patients, previously treated with primary orbital reconstruction, presenting themselves with indications for secondary reconstruction (i.e. enophthalmos, diplopia, or limited eye motility). Computed tomography and/or cone beam data sets were assessed before and after secondary reconstruction comparing intraorbital volumes, infraorbital angles, and clinical symptoms. Clinical outcomes were assessed using a standardized protocol. Results Results show a significant change in intraorbital volumes and a reduction of clinical symptoms after secondary reconstruction. Conclusions Outcomes of this study suggest that secondary orbital reconstruction can be performed routinely using selective laser-melted PSIs and titanium spacers.
Collapse
Affiliation(s)
- Daman D Singh
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lara Schorn
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - E Bradley Strong
- Department of Otolaryngology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michael Grant
- Plastic and Reconstructive Surgery at the R. Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Alexander Schramm
- Department of Oral-, Maxillo- and Plastic Facial Surgery, University of Ulm, Ulm, Germany
| | - Karsten Hufendiek
- Department of Oral-, Maxillo- and Plastic Facial Surgery, University of Hannover, Hannover, Germany
| | - Nils-Claudius Gellrich
- Department of Oral-, Maxillo- and Plastic Facial Surgery, University of Hannover, Hannover, Germany
| | - Majeed Rana
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
7
|
Orbit in a Box: A Simplified Technique for Patient-Specific Virtually Planned Orbital Floor Reconstruction. J Craniofac Surg 2020; 31:1117-1119. [PMID: 31934963 DOI: 10.1097/scs.0000000000006158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Possibilities for the reconstruction of orbital floor fractures have been extensive for years with regard to materials, methods and differential indications and are inconsistent worldwide. With the spread of CAD/CAM techniques, new and mostly time-consuming possibilities for orbital floor reconstructions have been added. METHODS The simple and time-efficient CT-to-patient-specific implant workflow presented here shows that a "form-box" can be created from a patient's computer tomography data set using planning software and a 3D printer. The box is then used to form a patient-specific implant for orbital floor reconstruction: here polydioxanone foil was used, for which stable thermoplastic deformability has been demonstrated for 3D reconstructions. RESULTS Patient-specific thermoplastic shaping of polydioxanone is feasible in a theoretical clinical setting, though its thermoplastic shaping is not yet certified for clinical use. However, a flexible adaptation of the "form-box" design to other materials is possible by setting a single planning parameter. CONCLUSIONS The simple structure of the box and its straightforward planning/fabrication process with widely available low-cost materials offer the possibility that a surgeon without a 3D specialist can produce a "form-box" for next day surgery if needed.
Collapse
|
8
|
Guillaume O, Geven MA, Varjas V, Varga P, Gehweiler D, Stadelmann VA, Smidt T, Zeiter S, Sprecher C, Bos RRM, Grijpma DW, Alini M, Yuan H, Richards GR, Tang T, Qin L, Yuxiao L, Jiang P, Eglin D. Orbital floor repair using patient specific osteoinductive implant made by stereolithography. Biomaterials 2019; 233:119721. [PMID: 31954958 DOI: 10.1016/j.biomaterials.2019.119721] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients' OF anatomy with better fidelity. As alternative to titanium mesh implants dedicated to OF repair, we propose a flexible patient-specific implant (PSI) made by stereolithography (SLA), offering a high degree of control over its geometry and architecture. The PSI is made of biodegradable poly(trimethylene carbonate) (PTMC) loaded with 40 wt % of hydroxyapatite (called Osteo-PTMC). In this work, we developed a complete work-flow for the additive manufacturing of PSIs to be used to repair the fractured OF, which is clinically relevant for individualized medicine. This work-flow consists of (i) the surgical planning, (ii) the design of virtual PSIs and (iii) their fabrication by SLA, (iv) the monitoring and (v) the biological evaluation in a preclinical large-animal model. We have found that once implanted, titanium meshes resulted in fibrous tissue encapsulation, whereas Osteo-PMTC resulted in rapid neovascularization and bone morphogenesis, both ectopically and in the OF region, and without the need of additional biotherapeutics such as bone morphogenic proteins. Our study supports the hypothesis that the composite osteoinductive Osteo-PTMC brings advantages compared to standard titanium mesh, by stimulating bone neoformation in the OF defects. PSIs made of Osteo-PTMC represent a significant advancement for patients whereby the anatomical characteristics of the OF defect restrict the utilization of traditional hand-shaped titanium mesh.
Collapse
Affiliation(s)
- Olivier Guillaume
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Mike A Geven
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, the Netherlands
| | - Viktor Varjas
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Peter Varga
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Dominic Gehweiler
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | | | - Tanja Smidt
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Christoph Sprecher
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Ruud R M Bos
- University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, the Netherlands
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Huipin Yuan
- - Xpand Biotechnology BV, Professor Bronkhorstlaan 10-d, 3723, MB Bilthoven, the Netherlands
| | - Geoff R Richards
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ling Qin
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai Yuxiao
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peng Jiang
- General Hospital of People's Liberation Army- Beijing 301 Hospital, Beijing, China
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland.
| |
Collapse
|
9
|
Brucoli M, Boffano P, Pezzana A, Benech A, Corre P, Bertin H, Pechalova P, Pavlov N, Petrov P, Tamme T, Kopchak A, Romanova A, Shuminsky E, Dediol E, Tarle M, Konstantinovic VS, Jelovac D, Karagozoglu KH, Forouzanfar T. The “European Mandibular Angle” research project: the analysis of complications after unilateral angle fractures. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:14-17. [DOI: 10.1016/j.oooo.2019.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/25/2019] [Indexed: 11/16/2022]
|
10
|
The “European Mandibular Angle” Research Project: The Epidemiologic Results From a Multicenter European Collaboration. J Oral Maxillofac Surg 2019; 77:791.e1-791.e7. [DOI: 10.1016/j.joms.2018.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
|
11
|
Wilbrand JF, Klussmann JP, Krombach G, Litzlbauer D, Wassill KH, Langer C, Wilbrandt R, Howaldt HP, Boettger S. Mirror-imaged correction of unilateral orbital deformation caused by a maxillary air cyst. ORAL AND MAXILLOFACIAL SURGERY CASES 2019. [DOI: 10.1016/j.omsc.2019.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Brucoli M, Boffano P, Broccardo E, Benech A, Corre P, Bertin H, Pechalova P, Pavlov N, Petrov P, Tamme T, Kopchak A, Hresko A, Shuminsky E, Dediol E, Tarle M, Konstantinovic VS, Petrovic M, Holmes S, Karagozoglu KH, Forouzanfar T. The "European zygomatic fracture" research project: The epidemiological results from a multicenter European collaboration. J Craniomaxillofac Surg 2019; 47:616-621. [PMID: 30765246 DOI: 10.1016/j.jcms.2019.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Fractures of the zygomaticomaxillary complex (ZMC) are common injuries that may lead to loss of an aesthetically pleasing appearance and functional impairment. The aim of this study was to analyze the demographics, causes, characteristics, and outcomes of zygomatic fractures managed at several European departments of oral and maxillofacial surgery. MATERIALS AND METHODS This study is based on a multicenter systematic database that allowed the recording of all patients with ZMC fractures between 1 January 2013 and 31 December 2017. The following data were recorded: gender, age, personal medical history, etiology, side of zygomatic fracture, classification of ZMC fracture, associated maxillofacial fractures, symptoms at diagnosis, type of performed treatment, and sequelae/complications. RESULTS A total of 1406 patients (1172 males, 234 females) were included in the study. Statistically significant correlations were found between assault-related ZMC fractures and the A3 class (p < .0000005) and between Infraorbital Nerve (ION) anesthesia and B class (p < .00000005). CONCLUSION The most frequent cause of ZMC fractures was assault, followed by falls. The most frequently involved decade of age was between 20 and 29 years. The decision and type of surgical treatment of ZMC fractures depends on several issues that need to be considered on a case by case basis.
Collapse
Affiliation(s)
- Matteo Brucoli
- Division of Maxillofacial Surgery at the University of Eastern Piedmont, Novara, Italy.
| | - Paolo Boffano
- Division of Maxillofacial Surgery at the University of Eastern Piedmont, Novara, Italy
| | - Emanuele Broccardo
- Division of Maxillofacial Surgery at the University of Eastern Piedmont, Novara, Italy
| | - Arnaldo Benech
- Division of Maxillofacial Surgery at the University of Eastern Piedmont, Novara, Italy
| | - Pierre Corre
- Service de Stomatologie et Chirurgie Maxillo-faciale at the Chu de Nantes, Nantes, France
| | - Helios Bertin
- Service de Stomatologie et Chirurgie Maxillo-faciale at the Chu de Nantes, Nantes, France
| | - Petia Pechalova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University, Plovdiv, Bulgaria
| | | | - Petko Petrov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University, Plovdiv, Bulgaria
| | - Tiia Tamme
- Department of Maxillofacial Surgery, Stomatology Clinic, Tartu University, Tartu, Estonia
| | - Andrey Kopchak
- Department for Oral and Maxillofacial Surgery at the Bogomolets National Medical University, Kiev, Ukraine
| | - Andrii Hresko
- Department for Oral and Maxillofacial Surgery at the Bogomolets National Medical University, Kiev, Ukraine
| | - Eugen Shuminsky
- Department for Oral and Maxillofacial Surgery at the Bogomolets National Medical University, Kiev, Ukraine
| | - Emil Dediol
- Department of Maxillofacial Surgery at the University Hospital Dubrava, Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery at the University Hospital Dubrava, Zagreb, Croatia
| | - Vitomir S Konstantinovic
- The Clinic of Maxillofacial Surgery of the School of Dentistry at the University of Belgrade, Belgrade, Serbia
| | - Milan Petrovic
- The Clinic of Maxillofacial Surgery of the School of Dentistry at the University of Belgrade, Belgrade, Serbia
| | - Simon Holmes
- Department of Oral and Maxillofacial Surgery, Royal London Hospital, Barts Health NHS, London, UK
| | - K Hakki Karagozoglu
- Department of Oral and Maxillofacial Surgery/Pathology, VU University Medical Center and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, VU University Medical Center and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| |
Collapse
|
13
|
Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, Santiago L, Ballard DH, Wang KC, Weadock W, Ionita CN, Mitsouras D, Morris J, Matsumoto J, Christensen A, Liacouras P, Rybicki FJ, Sheikh A. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 2018; 4:11. [PMID: 30649688 PMCID: PMC6251945 DOI: 10.1186/s41205-018-0030-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.
Collapse
Affiliation(s)
- Leonid Chepelev
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Nicole Wake
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY USA
- Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY USA
| | | | - Waleed Althobaity
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Ashish Gupta
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Elsa Arribas
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lumarie Santiago
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Kenneth C Wang
- Baltimore VA Medical Center, University of Maryland Medical Center, Baltimore, MD USA
| | - William Weadock
- Department of Radiology and Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI USA
| | - Ciprian N Ionita
- Department of Neurosurgery, State University of New York Buffalo, Buffalo, NY USA
| | - Dimitrios Mitsouras
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | | | | | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Frank J Rybicki
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
14
|
Doll C, Thieme N, Schönmuth S, Voss JO, Nahles S, Beck-Broichsitter B, Heiland M, Raguse JD. Enhanced radiographic visualization of resorbable foils for orbital floor reconstruction: A proof of principle. J Craniomaxillofac Surg 2018; 46:1533-1538. [PMID: 29983307 DOI: 10.1016/j.jcms.2018.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Despite the advantages and broad applications of alloplastic resorbable implants, postoperative radiological control is challenging due to its radiolucency. The aim of the present study was to evaluate the radiographic visibility of newly developed materials for orbital floor reconstruction. MATERIALS AND METHODS The radiographic visibility of four different material combinations consisting of poly-(L-lactic acid)/poly-glycolic acid (PLLA/PGA) or poly(D,L-lactic acid) (PDLLA) enriched with magnesium (Mg), hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) with various layers of thicknesses (0.3, 0.6, and 1 mm), surgically placed above the orbital floor of a human head specimen, was evaluated using computed tomography (CT) and cone beam computed tomography (CBCT). The visibility was rated on a scale of 0-10 in CT/CBCT and by Hounsfield Units in CT for each subject. RESULTS All of the materials were clearly detectable in CT scans. Visibility was significantly higher (p < 0.001) in the standard soft tissue window (mean score: 7.3, ranging from 2 to 10) in comparison to the standard bone window (mean score: 5.2, ranging from 1 to 10). In CBCT (mean score: 3.3, ranging from 0 to 7), there was significantly lower but still sufficient visibility of the materials compared to the CT soft tissue window (p < 0.001) and CT bone window (p < 0.001). Comparing the different materials' visibility among the group of same layer thicknesses with each other, in the majority of cases, PDLLA enriched with β-TCP appeared to be most visible in both CT and CBCT. CONCLUSION The incorporation of radiopaque elements to PLLA/PGA and PDLLA polymers is a promising strategy to improve their visibility in CT and CBCT. Our data suggest that the reconstruction of the orbital floor with these new materials could provide an advantageous postoperative radiographic control.
Collapse
Affiliation(s)
- Christian Doll
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany.
| | - Nadine Thieme
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Germany
| | - Stefanie Schönmuth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany
| | - Jan Oliver Voss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany
| | - Susanne Nahles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany
| | - Benedicta Beck-Broichsitter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany
| | - Max Heiland
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany
| | - Jan-Dirk Raguse
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany
| |
Collapse
|
15
|
Hodgdon T, Danrad R, Patel MJ, Smith SE, Richardson ML, Ballard DH, Ali S, Trace AP, DeBenedectis CM, Zygmont ME, Lenchik L, Decker SJ. Logistics of Three-dimensional Printing: Primer for Radiologists. Acad Radiol 2018; 25:40-51. [PMID: 29030283 DOI: 10.1016/j.acra.2017.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023]
Abstract
The Association of University Radiologists Radiology Research Alliance Task Force on three-dimensional (3D) printing presents a review of the logistic considerations for establishing a clinical service using this new technology, specifically focused on implications for radiology. Specific topics include printer selection for 3D printing, software selection, creating a 3D model for printing, providing a 3D printing service, research directions, and opportunities for radiologists to be involved in 3D printing. A thorough understanding of the technology and its capabilities is necessary as the field of 3D printing continues to grow. Radiologists are in the unique position to guide this emerging technology and its use in the clinical arena.
Collapse
|
16
|
Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions. Ophthalmic Plast Reconstr Surg 2017; 33:376-380. [PMID: 28230707 DOI: 10.1097/iop.0000000000000884] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Despite its increasing use in craniofacial reconstructions, three-dimensional (3D) printing of customized orbital implants has not been widely adopted. Limitations include the cost of 3D printers able to print in a biocompatible material suitable for implantation in the orbit and the breadth of available implant materials. The authors report the technique of low-cost 3D printing of orbital implant templates used in complex, often secondary, orbital reconstructions. METHODS A retrospective case series of 5 orbital reconstructions utilizing a technique of 3D printed orbital implant templates is presented. Each patient's Digital Imaging and Communications in Medicine data were uploaded and processed to create 3D renderings upon which a customized implant was designed and sent electronically to printers open for student use at our affiliated institutions. The mock implants were sterilized and used intraoperatively as a stencil and mold. The final implant material was chosen by the surgeons based on the requirements of the case. RESULTS Five orbital reconstructions were performed with this technique: 3 tumor reconstructions and 2 orbital fractures. Four of the 5 cases were secondary reconstructions. Molded Medpor Titan (Stryker, Kalamazoo, MI) implants were used in 4 cases and titanium mesh in 1 case. The stenciled and molded implants were adjusted no more than 2 times before anchored in place (mean 1). No case underwent further revision. CONCLUSIONS The technique and cases presented demonstrate 1) the feasibility and accessibility of low-cost, independent use of 3D printing technology to fashion patient-specific implants in orbital reconstructions, 2) the ability to apply this technology to the surgeon's preference of any routinely implantable material, and 3) the utility of this technique in complex, secondary reconstructions.
Collapse
|
17
|
Doerfler HM, Huempfner-Hierl H, Kruber D, Schulze P, Hierl T. Template-Based Orbital Wall Fracture Treatment Using Statistical Shape Analysis. J Oral Maxillofac Surg 2017; 75:1475.e1-1475.e8. [DOI: 10.1016/j.joms.2017.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
18
|
Fu K, Liu Y, Gao N, Cai J, He W, Qiu W. Reconstruction of Maxillary and Orbital Floor Defect With Free Fibula Flap and Whole Individualized Titanium Mesh Assisted by Computer Techniques. J Oral Maxillofac Surg 2017; 75:1791.e1-1791.e9. [PMID: 28463685 DOI: 10.1016/j.joms.2017.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE We sought to investigate the clinical application of free fibula flap and individualized titanium mesh through the use of a virtual planning and guiding template to assist the reconstruction of maxilla and orbital floor defects. PATIENTS AND METHODS Between 2015 and 2016, a total of 6 adult patients with maxillary and orbital floor defects were enrolled in this study. Preoperative virtual planning, including virtual maxillary resection and fibular reconstruction, was performed in all cases according to 3-dimensional radiographic and clinical findings. A 3-dimensionally printed resin model and prebent templates were used to guide the harvesting and positioning of the fibula flap during surgery. Then, an individualized titanium mesh was used to support the orbital floor and restore the maxillary contour. The results were confirmed by postoperative computed tomography scans and clinical follow-up. RESULTS Preoperative virtual planning and prebent templates can be used to guide the harvesting and positioning of the fibula flap, as well as the forming and positioning of the individualized titanium mesh, with satisfactory results. All flaps survived, and symmetrical facial contours were achieved with normal lower jaw movement and proper vertical distance for dental implants in all patients. CONCLUSIONS Computer-aided techniques such as virtual planning, 3-dimensionally printed models, and prebent guide templates can be used to harvest and position a free fibula flap, form personalized titanium mesh, and ultimately improve the clinical efficacy of maxillary and orbital floor reconstruction.
Collapse
Affiliation(s)
- Kun Fu
- Attending, Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Liu
- Attending, Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Gao
- Attending, Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghua Cai
- Resident, Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei He
- Professor and Department Head, Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiliu Qiu
- Professor and Academician Expert, Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; and Academician Expert Workstation of Head and Neck Tumor of Henan Province, Department of Oral & Maxillofacial Surgery, Ninth People's Hospital, and School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|