1
|
Wu X, Ou S, Zhang H, Zhen Y, Huang Y, Wei P, Shan Y. Long-term follow-up seizure outcomes after corpus callosotomy: A systematic review with meta-analysis. Brain Behav 2023; 13:e2964. [PMID: 36929636 PMCID: PMC10097058 DOI: 10.1002/brb3.2964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Corpus callosotomy (CC) is appropriate for patients with seizures of a bilateral or diffuse origin, or those with seizures of a unilateral origin with rapid spread to the contralateral cerebral hemisphere. The efficiency of CC in patients with drug-resistant epilepsy is a long-term concern because most articles reporting the surgical results of CC arise from small case series, and the durations of follow-up vary. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched to identify papers published before November 8, 2021. The systematic review was completed following PRISMA guidelines. Outcomes were analyzed by meta-analysis of the proportions. RESULTS A total of 1644 patients with drug-resistant epilepsy (49 retrospective or prospective case series studies) underwent CC, and the follow-up time of all patients was at least 1 year. The rate of complete seizure freedom (SF) was 12.38% (95% confidence interval [CI], 8.17%-17.21%). Meanwhile, the rate of complete SF from drop attacks was 61.86% (95% CI, 51.87%-71.41%). The rates of complete SF after total corpus callosotomy (TCC) and anterior corpus callosotomy (ACC) were 11.41% (95% CI, 5.33%-18.91%) and 6.75% (95% CI, 2.76%-11.85%), respectively. Additionally, the rate of complete SF from drop attacks after TCC was significantly higher than that after ACC (71.52%, 95% CI, 54.22%-86.35% vs. 57.11%, 95% CI, 42.17%-71.49%). The quality of evidence for the three outcomes by GRADE assessment was low to moderate. CONCLUSION There was no significant difference in the rate of complete SF between TCC and ACC. TCC had a significantly higher rate of complete SF from drop attacks than did ACC. Furthermore, CC for the treatment of drug-resistant epilepsy remains an important problem for further investigation because there are no universally accepted standardized guidelines for the extent of CC and its benefit to patients. In future research, we will focus on this issue.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Siqi Ou
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Huaqiang Zhang
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuhang Zhen
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yinchun Huang
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China.,International Neuroscience Institute (China-INI), Beijing, China.,Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Corpus Callosotomy in the Modern Era: Origins, Efficacy, Technical Variations, Complications, and Indications. World Neurosurg 2022; 159:146-155. [PMID: 35033693 DOI: 10.1016/j.wneu.2022.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Corpus callosotomy is among the oldest surgeries performed for drug-resistant epilepsy (DRE). First performed in 1940, various studies have since assessed its outcomes in various patient populations in addition to describing different extents of sectioning and emerging technologies (i.e. endoscopic, laser interstitial thermal therapy, and radiosurgery). In order to capture the current state and offer a reappraisal, we comprehensively review corpus callosotomy's origins, efficacy for various seizure types, technical variations, complications, and indications and compare the procedure to vagus nerve stimulation therapy which has similar indications. We consider corpus callosotomy to be a safe and efficacious procedure that should be considered by clinicians when appropriate. Furthermore, it can also play an important role in treating patients with DRE in low-to-middle-income countries where resources are limited.
Collapse
|
3
|
Chan AY, Rolston JD, Lee B, Vadera S, Englot DJ. Rates and predictors of seizure outcome after corpus callosotomy for drug-resistant epilepsy: a meta-analysis. J Neurosurg 2019; 130:1193-1202. [PMID: 29999448 PMCID: PMC6274594 DOI: 10.3171/2017.12.jns172331] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/23/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Corpus callosotomy is a palliative surgery for drug-resistant epilepsy that reduces the severity and frequency of generalized seizures by disconnecting the two cerebral hemispheres. Unlike with resection, seizure outcomes remain poorly understood. The authors systematically reviewed the literature and performed a meta-analysis to investigate rates and predictors of complete seizure freedom and freedom from drop attacks after corpus callosotomy. METHODS PubMed, Web of Science, and Scopus were queried for primary studies examining seizure outcomes after corpus callosotomy published over 30 years. Rates of complete seizure freedom or drop attack freedom were recorded. Variables showing a potential relationship to seizure outcome on preliminary analysis were subjected to formal meta-analysis. RESULTS The authors identified 1742 eligible patients from 58 included studies. Overall, the rates of complete seizure freedom and drop attack freedom after corpus callosotomy were 18.8% and 55.3%, respectively. Complete seizure freedom was significantly predicted by the presence of infantile spasms (OR 3.86, 95% CI 1.13-13.23), normal MRI findings (OR 4.63, 95% CI 1.75-12.25), and shorter epilepsy duration (OR 2.57, 95% CI 1.23-5.38). Freedom from drop attacks was predicted by complete over partial callosotomy (OR 2.90, 95% CI 1.07-7.83) and idiopathic over known epilepsy etiology (OR 2.84, 95% CI 1.35-5.99). CONCLUSIONS The authors report the first systematic review and meta-analysis of seizure outcomes in both adults and children after corpus callosotomy for epilepsy. Approximately one-half of patients become free from drop attacks, and one-fifth achieve complete seizure freedom after surgery. Some predictors of favorable outcome differ from those in resective epilepsy surgery.
Collapse
Affiliation(s)
- Alvin Y. Chan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John D. Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah
| | - Brian Lee
- Department of Neurological Surgery, University of Southern California, Los Angeles
| | - Sumeet Vadera
- Department of Neurological Surgery, University of California, Irvine, California
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Watila MM, Xiao F, Keezer MR, Miserocchi A, Winkler AS, McEvoy AW, Sander JW. Epilepsy surgery in low- and middle-income countries: A scoping review. Epilepsy Behav 2019; 92:311-326. [PMID: 30738248 DOI: 10.1016/j.yebeh.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epilepsy surgery is an important treatment option for people with drug-resistant epilepsy. Surgical procedures for epilepsy are underutilized worldwide, but it is far worse in low- and middle-income countries (LMIC), and it is less clear as to what extent people with drug-resistant epilepsy receive such treatment at all. Here, we review the existing evidence for the availability and outcome of epilepsy surgery in LMIC and discuss some challenges and priority. METHODS We used an accepted six-stage methodological framework for scoping reviews as a guide. We searched PubMed, Embase, Global Health Archives, Index Medicus for South East Asia Region (IMSEAR), Index Medicus for Eastern Mediterranean Region (IMEMR), Latin American & Caribbean Health Sciences Literature (LILACS), African Journal Online (AJOL), and African Index Medicus (AIM) to identify the relevant literature. RESULTS We retrieved 148 articles on epilepsy surgery from 31 countries representing 22% of the 143 LMIC. Epilepsy surgery appears established in some of these centers in Asia and Latin America while some are in their embryonic stage reporting procedures in a small cohort performed mostly by motivated neurosurgeons. The commonest surgical procedure reported was temporal lobectomies. The postoperative seizure-free rates and quality of life (QOL) are comparable with those in the high-income countries (HIC). Some models have shown that epilepsy surgery can be performed within a resource-limited setting through collaboration with international partners and through the use of information and communications technology (ICT). The cost of surgery is a fraction of what is available in HIC. CONCLUSION This review has demonstrated the availability of epilepsy surgery in a few LMIC. The information available is inadequate to make any reasonable conclusion of its existence as routine practice. Collaborations with international partners can provide an opportunity to bring high-quality academic training and technological transfer directly to surgeons working in these regions and should be encouraged.
Collapse
Affiliation(s)
- Musa M Watila
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK; Neurology Unit, Department of Medicine, University of Maiduguri Teaching Hospital, PMB 1414, Maiduguri, Borno State, Nigeria
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Magnetic Resonance Imaging Unit, Epilepsy Society, Gerrards Cross, UK
| | - Mark R Keezer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK; Centre hospitalier de l'Université de Montréal (CHUM), Hôpital Notre-Dame, Montréal, Québec H2L 4M1, Canada; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, Netherlands
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Andrea S Winkler
- Centre for Global Health, Institute of Health and Society, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; Center for Global Health, Department of Neurology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, Netherlands.
| |
Collapse
|