1
|
Bone-Conditioned Medium Obtained From Calvaria, Mandible, and Tibia Cause an Equivalent TGF-β1 Response In Vitro. J Craniofac Surg 2018; 29:553-557. [DOI: 10.1097/scs.0000000000004251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
2
|
Kuchler U, Rybaczek T, Dobask T, Heimel P, Tangl S, Klehm J, Menzel M, Gruber R. Bone-conditioned medium modulates the osteoconductive properties of collagen membranes in a rat calvaria defect model. Clin Oral Implants Res 2018; 29:381-388. [PMID: 29453780 DOI: 10.1111/clr.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Collagen membranes are not limited to be occlusive barriers as they actively support bone regeneration. However, the impact of bone-derived growth factors on their osteoconductive competence has not been examined. METHODS Twenty adult Sprague Dawley rats were included in the study. Calvaria defects with a diameter of five millimeter were created. The defect was covered with one layer of a collagen membrane previously soaked in conditioned medium of porcine bone chips or in culture medium alone. After 4 weeks, microcomputed tomography was performed. Undecalcified thin-ground sections were subjected to light and scanning electron microscopy. Primary outcome parameter was the bone volume in the defect. Unit of analysis was the bone-conditioned medium (BCM). RESULTS In the central defect area of the control and the BCM group, median new bone connected to the host bone was 0.54 and 0.32 mm³, respectively (p = .10). In the ectocranial defect area, the control group showed significantly more bone than the BCM group (0.90 and 0.26 mm³; p = .02). Based on an exploratory interpretation, the control group had smaller bony islands than the BCM group. Scanning electron microscopy and histology indicate the formation of bone but also the collagen membrane to be mineralized in the defect site. CONCLUSIONS These results demonstrate that the commercial collagen membrane holds an osteoconductive competence in a rat calvaria defect model. Soaking collagen membranes with BCM shifts bone formation toward the formation of bony islands rather than new bone connected to the host bone.
Collapse
Affiliation(s)
- Ulrike Kuchler
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Tina Rybaczek
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Toni Dobask
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jessica Klehm
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|