1
|
Charoenlarp P, Rajendran AK, Fujihara R, Kojima T, Nakahama KI, Sasaki Y, Akiyoshi K, Takechi M, Iseki S. The improvement of calvarial bone healing by durable nanogel-crosslinked materials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1876-1894. [DOI: 10.1080/09205063.2018.1517403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pornkawee Charoenlarp
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Arun Kumar Rajendran
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Rie Fujihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Taisei Kojima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Ken-ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Masaki Takechi
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Buckholtz GA, Reger NA, Anderton WD, Schimoler PJ, Roudebush SL, Meng WS, Miller MC, Gawalt ES. Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:126-34. [PMID: 27157735 DOI: 10.1016/j.msec.2016.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
A new composite bioceramic consisting of calcium aluminum oxide (CaAlO) and hydroxyapatite (HA) was functionalized with the synthetic antimicrobial peptide Inverso-CysHHC10. CaAlO is a bioceramic that can be mold cast easily and quickly at room temperature. Improved functionality was previously achieved through surface reactions. Here, composites containing 0-5% HA (by mass) were prepared and the elastic modulus and modulus of rupture were mechanically similar to non-load bearing bone. The addition of hydroxyapatite resulted in increased osteoblast attachment (>180%) and proliferation (>140%) on all composites compared to 100% CaAlO. Antimicrobial peptide (AMP) immobilization was achieved using an interfacial alkene-thiol click reaction. The linked AMP persisted on the composite (>99.6% after 24h) and retained its activity against Escherichia coli based on N-phenylnaphthylamine uptake and bacterial turbidity tests. Overall, this simple scaffold system improves osteoblast activity and reduces bacterial activity.
Collapse
Affiliation(s)
- Gavin A Buckholtz
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nina A Reger
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - William D Anderton
- Orthopaedic Biomechanics Research Laboratory, Allegheny General Hospital, Pittsburgh, PA 15212, USA
| | - Patrick J Schimoler
- Orthopaedic Biomechanics Research Laboratory, Allegheny General Hospital, Pittsburgh, PA 15212, USA
| | - Shana L Roudebush
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mark C Miller
- Orthopaedic Biomechanics Research Laboratory, Allegheny General Hospital, Pittsburgh, PA 15212, USA
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
3
|
Ardjomandi N, Huth J, Stamov DR, Henrich A, Klein C, Wendel HP, Reinert S, Alexander D. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:267-275. [PMID: 27287122 DOI: 10.1016/j.msec.2016.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022]
Abstract
Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs.
Collapse
Affiliation(s)
- N Ardjomandi
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - J Huth
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | | | - A Henrich
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - C Klein
- Dental Practice Zahngesundheit Waiblingen, Waiblingen, Germany
| | - H-P Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen, Germany
| | - S Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany
| | - D Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Germany.
| |
Collapse
|
4
|
Palchesko RN, Buckholtz GA, Romeo JD, Gawalt ES. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:398-406. [PMID: 24857508 DOI: 10.1016/j.msec.2014.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 02/20/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences.
Collapse
Affiliation(s)
- Rachelle N Palchesko
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Gavin A Buckholtz
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Jared D Romeo
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Ellen S Gawalt
- Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
5
|
Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 2014; 35:5453-61. [PMID: 24726536 DOI: 10.1016/j.biomaterials.2014.03.055] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/21/2014] [Indexed: 01/01/2023]
Abstract
Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential.
Collapse
|
6
|
Clafshenkel WP, Rutkowski JL, Palchesko RN, Romeo JD, McGowan KA, Gawalt ES, Witt-Enderby PA. A novel calcium aluminate-melatonin scaffold enhances bone regeneration within a calvarial defect. J Pineal Res 2012; 53:206-18. [PMID: 22462771 DOI: 10.1111/j.1600-079x.2012.00989.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over 500,000 bone graft or bio-implant procedures are performed annually in the United States. It has been reported that osseous autograft procurement may result in donor site complications and bio-implant allografts have been associated with disease transmission. Ceramic scaffolds are only osteoconductive, limiting their clinical use. The objective of this study was to create a bone filler substitute with regenerating properties similar to natural bone. Therefore, melatonin and platelet-rich plasma (PRP) were utilized for their known osteoinductive properties. It was hypothesized that melatonin and/or PRP would enhance the osteoinductive and osteoconductive properties of calcium aluminate (CA) scaffolds to promote bone regeneration in a model of calvarial defects. The biocompatibility of CA and CA-Mel scaffolds was tested in vitro and in vivo. Data show that CA-Mel scaffolds, in comparison with CA scaffolds, enhanced the adhesion, viability, and proliferation of normal human osteoblasts cells but not that of NIH3T3 fibroblasts. Data also showed that human adult mesenchymal stem cells grown on CA or CA-Mel scaffolds showed a time-dependent induction into osteoblasts over 14days revealed through scanning electron microscopy and by alkaline phosphatase analyses. Implantation of CA-Mel scaffolds into critical size calvarial defects in female, ovariectomized rats showed that the CA-Mel scaffolds were biocompatible, allowed for tissue infiltration, and showed evidence of scaffold biodegradation by 3 and 6months. Bone regeneration, assessed using fluorochrome labeling at 3 and 6months, was greatest in animals implanted with the CA-Mel scaffold. Overall, results from this study show that CA-Mel scaffolds were osteoconductive and osteoinductive.
Collapse
Affiliation(s)
- William P Clafshenkel
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Palchesko RN, Romeo JD, McGowan KA, Gawalt ES. Increased osteoblast adhesion on physically optimized KRSR modified calcium aluminate. J Biomed Mater Res A 2012; 100:1229-38. [PMID: 22362675 DOI: 10.1002/jbm.a.33303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/19/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
Calcium aluminate (CA) is a porous biocompatible material easily cast at room temperature. Through this casting process, the average surface pore size of CA was varied from an average of 100 to 290 microns. The optimal surface pore size of the hydrated CA for cell viability was determined to be 100 microns. Further, a three step-solution deposition technique was developed to covalently immobilize cell adhesion peptides, RGD, and KRSR to the CA surface. Cell adhesion for 1-, 4-, and 7-day time periods was tested with primary osteoblasts and NIH 3T3 fibroblasts. Both peptides were found to increase fibroblast adhesion to the CA surface. However, only KRSR increased osteoblast adhesion to the surface of the CA, which may aid in bone formation after implantation.
Collapse
Affiliation(s)
- Rachelle N Palchesko
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | |
Collapse
|
8
|
Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater 2011; 7:739-50. [PMID: 20688196 DOI: 10.1016/j.actbio.2010.07.035] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/28/2023]
Abstract
Autologous bone grafting is currently considered as the gold standard to restore bone defects. However, clinical benefit is not guaranteed and there is an associated 8-39% complication rate. This has resulted in the development of alternative (synthetic) bone substitutes. The aim of this systematic literature review was to provide a comprehensive overview of literature data of bone substitutes registered in the Netherlands for use in trauma and orthopedic surgery. Brand names of selected products were used as search terms in three available databases: Embase, PubMed and Cochrane. Manuscripts written in English, German or Dutch that reported on structural, biological or biomechanical properties of the pure product or on its use in trauma and orthopedic surgery were included. The primary search resulted in 475 manuscripts from PubMed, 653 from Embase and 10 from Cochrane. Of these, 218 met the final inclusion criteria. Of each product, structural, biological and biomechanical characteristics as well as their clinical indications in trauma and orthopedic surgery are provided. All included products possess osteoconductive properties but differ in resorption time and biomechanical properties. They have been used for a wide range of clinical applications; however, the overall level of clinical evidence is low. The requirements of an optimal bone substitute are related to the size and location of the defect. Calcium phosphate grafts have been used for most trauma and orthopedic surgery procedures. Calcium sulphates were mainly used to restore bone defects after tumour resection surgery but offer minimal structural support. Bioactive glass remains a potential alternative; however, its use has only been studied to a limited extent.
Collapse
|
9
|
Shekaran A, García AJ. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 2010; 96:261-72. [PMID: 21105174 DOI: 10.1002/jbm.a.32979] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 01/12/2023]
Abstract
Limited osseointegration of current orthopedic biomaterials contributes to the failure of implants such as arthroplasties, bone screws, and bone grafts, which present a large socioeconomic cost within the United States. These implant failures underscore the need for biomimetic approaches that modulate host cell-implant material responses to enhance implant osseointegration and bone formation. Bioinspired strategies have included functionalizing implants with extracellular matrix (ECM) proteins or ECM-derived peptides or protein fragments, which engage integrins and direct osteoblast adhesion and differentiation. This review discusses (1) bone ECM composition and key integrins implicated in osteogenic differentiation, (2) the use of implants functionalized with ECM-mimetic peptides/protein fragments, and (3) growth factor-derived peptides to promote the mechanical fixation of implants to bone and to enhance bone healing within large defects.
Collapse
Affiliation(s)
- Asha Shekaran
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|