1
|
Wang J, Ye X, Wang Y. Anshen Shumai Decoction inhibits post-infarction inflammation and myocardial remodeling through suppression of the p38 MAPK/c-FOS/EGR1 pathway. J Mol Histol 2024; 55:437-454. [PMID: 38874870 DOI: 10.1007/s10735-024-10214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Anshen Shumai Decoction (ASSMD) is traditionally employed to manage coronary artery disease arrhythmias. Its protective efficacy against myocardial infarction remains to be elucidated. This investigation employed a rat model of myocardial infarction, achieved through the ligation of the left anterior descending (LAD) coronary artery, followed by a 28-day administration of ASSMD. The study observed the decoction's mitigative impact on myocardial injury, with gene regulation effects discerned through transcriptomic analysis. Furthermore, ASSMD's influence on cardiomyocyte apoptosis and fibrotic protein secretion was assessed using an embryonic rat cardiomyocyte cell line (H9c2) under hypoxic conditions and rat cardiac fibroblasts subjected to normoxic culture conditions with TGF-β. A functional rescue assay involving overexpression of FOS and Early Growth Response Factor 1 (EGR1), combined with inhibition of the p38 Mitogen-activated Protein Kinase (MAPK) pathway, was conducted. Results indicated that ASSMD significantly curtailed cardiomyocyte apoptosis and myocardial fibrosis in infarcted rats, primarily by downregulating FOS and EGR1 gene expression and inhibiting the upstream p38 MAPK pathway. These actions of ASSMD culminated in reduced expression of pro-apoptotic, collagen, and fibrosis-associated proteins, conferring myocardial protection and anti-fibrotic effects on cardiac fibroblasts.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Cardiology, Chun'an County Traditional Chinese Medicine Hospital, No. 1 Xin'an West Road, Qiandaohu Town, Chun'an County, Hangzhou, 311700, P. R. China
| | - Xiaolei Ye
- School of Medicine, Ningbo University, Ningbo, 315211, P. R. China
| | - Yanqin Wang
- Department of Cardiology, Chun'an County Traditional Chinese Medicine Hospital, No. 1 Xin'an West Road, Qiandaohu Town, Chun'an County, Hangzhou, 311700, P. R. China.
| |
Collapse
|
2
|
Chen P, Zhou D, Liu Y, Wang P, Wang W. Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:87-94. [PMID: 35203059 PMCID: PMC8890941 DOI: 10.4196/kjpp.2022.26.2.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction promotes cardiac remodeling and myocardial fibrosis, thus leading to cardiac dysfunction or heart failure. Peiminine has been regarded as a traditional anti-fibrotic Chinese medicine in pulmonary fibrosis. However, the role of peiminine in myocardial infarction-induced myocardial injury and fibrosis remained elusive. Firstly, rat model of myocardial infarction was established using ligation of the left coronary artery, which were then intraperitoneally injected with 2 or 5 mg/kg peiminine once a day for 4 weeks. Echocardiography and haemodynamic evaluation results showed that peiminine treatment reduced left ventricular end-diastolic pressure, and enhanced maximum rate of increase/decrease of left ventricle pressure (± dP/dt max) and left ventricular systolic pressure, which ameliorate the cardiac function. Secondly, myocardial infarction-induced myocardial injury and infarct size were also attenuated by peiminine. Moreover, peiminine inhibited myocardial infarction-induced increase of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production, as well as the myocardial cell apoptosis, in the rats. Thirdly, peiminine also decreased the myocardial fibrosis related protein expression including collagen I and collagen III. Lastly, peiminine reduced the expression of p38 and phosphorylation of extracellular signal-regulated kinase 1/2 in rat model of myocardial infarction. In conclusion, peiminine has a cardioprotective effect against myocardial infarction-induced myocardial injury and fibrosis, which can be attributed to the inactivation of mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Peng Chen
- Department of Vasculocardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Dengming Zhou
- Department of Vasculocardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Yongsheng Liu
- Department of Vasculocardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Ping Wang
- Department of Vasculocardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Weina Wang
- Department of Vasculocardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| |
Collapse
|
3
|
Boudart C, Su F, Pitisci L, Dhoine A, Duranteau O, Jespers P, Herpain A, Vanderpool R, Brimioulle S, Creteur J, Naeije R, Van Obbergh L, Dewachter L. Early Hyperdynamic Sepsis Alters Coronary Blood Flow Regulation in Porcine Fecal Peritonitis. Front Physiol 2021; 12:754570. [PMID: 34925058 PMCID: PMC8678271 DOI: 10.3389/fphys.2021.754570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sepsis is a common condition known to impair blood flow regulation and microcirculation, which can ultimately lead to organ dysfunction but such contribution of the coronary circulation remains to be clarified. We investigated coronary blood flow regulatory mechanisms, including autoregulation, metabolic regulation, and endothelial vasodilatory response, in an experimental porcine model of early hyperdynamic sepsis. Methods: Fourteen pigs were randomized to sham (n = 7) or fecal peritonitis-induced sepsis (n = 7) procedures. At baseline, 6 and 12 h after peritonitis induction, the animals underwent general and coronary hemodynamic evaluation, including determination of autoregulatory breakpoint pressure and adenosine-induced maximal coronary vasodilation for coronary flow reserve and hyperemic microvascular resistance calculation. Endothelial-derived vasodilatory response was assessed both in vivo and ex vivo using bradykinin. Coronary arteries were sampled for pathobiological evaluation. Results: Sepsis resulted in a right shift of the autoregulatory breakpoint pressure, decreased coronary blood flow reserve and increased hyperemic microvascular resistance from the 6th h after peritonitis induction. In vivo and ex vivo endothelial vasomotor function was preserved. Sepsis increased coronary arteries expressions of nitric oxide synthases, prostaglandin I2 receptor, and prostaglandin F2α receptor. Conclusion: Autoregulation and metabolic blood flow regulation were both impaired in the coronary circulation during experimental hyperdynamic sepsis, although endothelial vasodilatory response was preserved.
Collapse
Affiliation(s)
- Céline Boudart
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Pitisci
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Dhoine
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Duranteau
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pascale Jespers
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Serge Brimioulle
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Van Obbergh
- Department of Anesthesiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
MG53 Protects against Sepsis-Induced Myocardial Dysfunction by Upregulating Peroxisome Proliferator-Activated Receptor- α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7413693. [PMID: 32908637 PMCID: PMC7474382 DOI: 10.1155/2020/7413693] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Background The heart is one of the most commonly affected organs during sepsis. Mitsugumin-53 (MG53) has attracted attention in research due to its cardioprotective function. However, the role of MG53 in sepsis-induced myocardial dysfunction (SIMD) remains unknown. The purpose of this study was to explore the underlying mechanism of MG53 in SIMD and investigate its potential relationship with peroxisome proliferator-activated receptor-α (PPARα). Methods The cecal ligation and puncture (CLP) model was created to induce SIMD in rats. Protein levels of MG53 and PPARα, cardiac function, cardiomyocyte injury, myocardial oxidative stress and inflammatory indicators, and cardiomyocyte apoptosis were measured at 18 h after CLP. The effects of MG53 on PPARα in SIMD were investigated via preconditioning recombinant human MG53 (rhMG53) and PPARα antagonist GW6471. Results The expression of MG53 and PPARα sharply decreased in the myocardium at 18 h after CLP. Compared with the sham group, cardiac function was significantly depressed, which was associated with the destructed myocardium, upregulated oxidative stress indicators and proinflammatory cytokines, and excessive cardiomyocyte apoptosis in the CLP group. Supplementation with rhMG53 enhanced myocardial MG53, increased the survival rate with improved cardiac function, and reduced oxidative stress, inflammation, and myocardial apoptosis, which were associated with PPARα upregulation. Pretreatment with GW6471 abolished the abovementioned protective effects induced by MG53. Conclusions Both MG53 and PPARα were downregulated after sepsis shock. MG53 supplement protects the heart against SIMD by upregulating PPARα expression. Our results provide a new treatment strategy for SIMD.
Collapse
|
5
|
Wang C, Zhang C, Wu D, Guo L, Zhao F, Lv J, Fu L. Cholecystokinin octapeptide reduces myocardial fibrosis and improves cardiac remodeling in post myocardial infarction rats. Int J Biochem Cell Biol 2020; 125:105793. [PMID: 32554056 DOI: 10.1016/j.biocel.2020.105793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND/AIMS Myocardial infarction (MI) increases myocardial fibrosis (MF) and subsequent cardiac remodeling. Cholecystokinin octapeptide (CCK-8) is expressed in cardiomyocytes and plays an important role in cardiovascular regulation. In this study, we intend to use a rat model of myocardial infarction to evaluate the effects of CCK-8 on myocardial fibrosis and cardiac remodeling. METHODS Male Sprague-Dawley rats were separated into 3 groups: sham operation, MI + NaCl, and MI + CCK-8. All rats were subjected to left coronary artery ligation to induce MI or sham operation and then treated with CCK-8 or saline for 28 days. After 4 weeks, echocardiography was performed to assess cardiac function and myocardial fibrosis was evaluated using H&E and Masson's Trichrome-stained sections. The levels of BNP, CCK-8 in the plasma of all rats were detected by ELISA; RNA sequencing (RNA-seq) analysis was also adapted to detect differentially expressed genes in myocardial tissues of each group. Myocardial expression of fibrosis markers was analyzed by western blotting, immunohistochemistry and qRT-PCR. RESULTS CCK-8 was demonstrated to improve left ventricular function and results of H&E staining, Masson's trichrome staining, immunohistochemistry and western blotting showed that CCK-8 attenuated MF. Gene expression profiles of the left ventricles were analysed by RNA-seq and validated by qRT-PCR. Cardiac fibrosis genes were downregulated by CCK-8 in the left ventricle. SIGNIFICANCE CCK-8 can alleviate fibrosis in the noninfarcted regions and delay the left ventricular remodeling and the progress of heart failure in a MI rat model.
Collapse
Affiliation(s)
- Can Wang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cuili Zhang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongdong Wu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu Guo
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fali Zhao
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinxin Lv
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu Fu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Abstract
This study tested the hypothesis that CD44 is involved in the development of cardiac fibrosis via angiotensin II (Ang II) AT1 receptor-stimulated TNFα/NFκB/IκB signaling pathways. Study was conducted in C57BL/6 wild type and CD44 knockout mice subjected to Ang II infusion (1,000 ng/kg/min) using osmotic minipumps up to 4 weeks or with gastric gavage administration of the AT1 receptor blocker, telmisartan at a dose of 10 mg/kg/d. Results indicated that Ang II enhances expression of the AT1 receptor, TNFα, NFκB, and CD44 as well as downregulates IκB. Further analyses revealed that Ang II increases macrophage migration, augments myofibroblast proliferation, and induces vascular/interstitial fibrosis. Relative to the Ang II group, treatment with telmisartan significantly reduced expression of the AT1 receptor and TNFα. These changes occurred in coincidence with decreased NFκB, increased IκB, and downregulated CD44 in the intracardiac vessels and intermyocardium. Furthermore, macrophage migration and myofibroblast proliferation were inhibited and fibrosis was attenuated. Knockout of CD44 did not affect Ang II-stimulated AT1 receptor and modulated TNFα/NFκB/IκB signaling, but significantly reduced macrophage/myofibroblast-mediated fibrosis as identified by less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in the development of cardiac fibrosis by stimulating TNFα/NFκB/IκB-triggered CD44 signaling pathways. Knockout of CD44 blocked Ang II-induced cell migration/proliferation and cardiac fibrosis. Therefore, selective inhibition of CD44 may be considered as a potential therapeutic target for attenuating Ang II-induced deleterious cardiovascular effects.
Collapse
|
7
|
Agbo E, Liu D, Li M, Saahene RO, Chen L, Zhao L, Wang Y, Tian G. Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats. Turk J Med Sci 2019; 49:945-958. [PMID: 31091855 PMCID: PMC7018219 DOI: 10.3906/sag-1812-49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background/aim Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardioprotective effects against coronary artery ligation (CAL)-induced HF in rats. Materials and methods Rats with four weeks of permanent CAL, induced myocardial infarction, and HF were randomly separated into four groups: the control group (Ctrl), sham group (Sham), hexarelin treatment group (HF + Hx), and heart failure group (HF). The rats were treated with subcutaneous injection of hexarelin (100 µg/kg) in the treatment group or saline in the other groups twice a day for 30 days. Left ventricular (LV) function, oxidative stress, apoptosis, molecular analyses, and cardiac structural and pathological changes in rats were assessed. Results The treatment of HF rats with hexarelin significantly induced the upregulation of phosphatase and tensin homologue (PTEN) expression and inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) to significantly improve LV function, ameliorate myocardial remodeling, and reduce oxidative stress. Conclusion These findings indicate that hexarelin attenuates CAL-induced HF in rats by ameliorating myocardial remodeling, LV dysfunction, and oxidative stress via the upmodulation of PTEN signaling and downregulation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Elvis Agbo
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Donhai Liu
- College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Meixiu Li
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Roland Osei Saahene
- Department of Immunology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Liqiang Chen
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Lunpeng Zhao
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Yiquan Wang
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Guozhong Tian
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| |
Collapse
|
8
|
The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5343972. [PMID: 28781721 PMCID: PMC5525092 DOI: 10.1155/2017/5343972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by cardiac remodeling and impaired diastolic function that may lead to heart failure. The aim of this study was to evaluate oxidative stress, inflammatory cells, and fibrosis in both subendocardial (SEN) and interstitial (INT) areas of the myocardium. Male Wistar rats were allocated to 2 groups of 9 animals, a control (CT) group and streptozotocin-induced diabetes (DM). After 8 weeks, echocardiography morphometry, protein expression, and confocal microscopy in SEN and INT areas of the left ventricle (LV) were performed. The echocardiographic analysis showed that diabetes induction leads to cardiac dilation, hypertrophy, and LV diastolic dysfunction. As compared to CT, the induction of diabetes increased inflammatory cells and fibrosis in both SEN and INT areas of DM myocardium and increased ROS generation only in SEN. Comparing the SEN and INT areas in the DM group, inflammatory cells and fibrosis in SEN were greater than in INT. In conclusion, diabetic myocardium SEN area, wherein oxidative stress was more pronounced, is more susceptible to cardiac dysfunction than INT area. This finding can be important for the understanding of the heart remodeling process occurring in DCM and perhaps to engender targeted therapies to attenuate or revert DCM-related diastolic dysfunction.
Collapse
|
9
|
Abstract
Sepsis-induced myocardial dysfunction is a common complication in septic patients and is associated with increased mortality. In the clinical setting, it was once believed that myocardial dysfunction was not a major pathological process in the septic patients, at least in part, due to the unavailability of suitable clinical markers to assess intrinsic myocardial function during sepsis. Although sepsis-induced myocardial dysfunction has been studied in clinical and basic research for more than 30 years, its pathophysiology is not completely understood, and no specific therapies for this disorder exist. The purpose of this review is to summarize our current knowledge of sepsis-induced myocardial dysfunction with a special focus on pathogenesis and clinical characteristics.
Collapse
Affiliation(s)
- Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| |
Collapse
|
10
|
DellaVolpe JD, Moore JE, Pinsky MR. Arterial blood pressure and heart rate regulation in shock state. Curr Opin Crit Care 2015; 21:376-80. [DOI: 10.1097/mcc.0000000000000239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
What's New in Shock, November 2014? Shock 2014; 42:381-2. [PMID: 25320912 DOI: 10.1097/shk.0000000000000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|