1
|
Li H, Le L, Marrero M, David-Bercholz J, Caceres AI, Lim C, Chiang W, Majewska AK, Terrando N, Gelbard HA. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. RESEARCH SQUARE 2023:rs.3.rs-3459515. [PMID: 37961257 PMCID: PMC10635322 DOI: 10.21203/rs.3.rs-3459515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods We have applied a three-dose paradigm of 10μg/40μl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Linh Le
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Mariah Marrero
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | | | - Ana I Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Claire Lim
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
- Department of Immmunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY United States
| |
Collapse
|
2
|
Li H, Le L, Marrero M, David-Bercholz J, Caceres AI, Lim C, Chiang W, Majewska AK, Terrando N, Gelbard HA. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562508. [PMID: 37905036 PMCID: PMC10614777 DOI: 10.1101/2023.10.16.562508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods We have applied a three-dose paradigm of 10μg/40μl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Linh Le
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Mariah Marrero
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | | | - Ana I Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Claire Lim
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
- Department of Immmunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY United States
| |
Collapse
|
3
|
Rummel C, del Rey A, Bähr L, Krüger K, Peters E. 1st European Psychoneuroimmunology Network (EPN) Autumn School: Lung-Brain Axis in Health and Disease. Neuroimmunomodulation 2022; 29 Suppl 2:3-8. [PMID: 36049468 PMCID: PMC9677835 DOI: 10.1159/000526565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
- *Christoph Rummel,
| | - Adriana del Rey
- Institute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Leona Bähr
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Justus Liebig University Giessen, Giessen, Germany
| | - Eva Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University Giessen, Giessen, and Universitätsmedizin-Charité, Berlin, Germany
| |
Collapse
|
4
|
Martín-Vicente P, López-Martínez C, Lopez-Alonso I, López-Aguilar J, Albaiceta GM, Amado-Rodríguez L. Molecular mechanisms of postintensive care syndrome. Intensive Care Med Exp 2021; 9:58. [PMID: 34859298 PMCID: PMC8639215 DOI: 10.1186/s40635-021-00423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Inés Lopez-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació I Innovació Parc Taulí I3PT, Sabadell, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| |
Collapse
|
5
|
Albaiceta GM, Brochard L, Dos Santos CC, Fernández R, Georgopoulos D, Girard T, Jubran A, López-Aguilar J, Mancebo J, Pelosi P, Skrobik Y, Thille AW, Wilcox ME, Blanch L. The central nervous system during lung injury and mechanical ventilation: a narrative review. Br J Anaesth 2021; 127:648-659. [PMID: 34340836 DOI: 10.1016/j.bja.2021.05.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia C Dos Santos
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Rafael Fernández
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Department, Althaia Xarxa Assistencial Universitaria de Manresa, Universitat Internacional de Catalunya, Manresa, Spain
| | - Dimitris Georgopoulos
- Intensive Care Medicine Department, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Timothy Girard
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines VA Hospital, Hines, IL, USA; Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Mancebo
- Servei Medicina Intensiva, University Hospital Sant Pau, Barcelona, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Yoanna Skrobik
- Department of Medicine, McGill University, Regroupement de Soins Critiques Respiratoires, Réseau de Soins Respiratoires FRQS, Montreal, QC, Canada
| | - Arnaud W Thille
- CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France; INSERM CIC 1402 ALIVE, Université de Poitiers, Poitiers, France
| | - Mary E Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology (Critical Care Medicine), University Health Network, Toronto, ON, Canada
| | - Lluis Blanch
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
6
|
Giordano G, Pugliese F, Bilotta F. Neuroinflammation, neuronal damage or cognitive impairment associated with mechanical ventilation: A systematic review of evidence from animal studies. J Crit Care 2020; 62:246-255. [PMID: 33454552 DOI: 10.1016/j.jcrc.2020.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Long-term cognitive impairment is a complication of critical illness survivors. Beside its lifesaving role, mechanical ventilation has potential complications. The aim of this study is to systematically review the evidence collected in animal studies that correlate mechanical ventilation with neuroinflammation, neuronal damage and cognitive impairment. METHODS We searched MEDLINE and EMBASE databases for studies published from inception until August 31st, 2020, that enrolled mechanically ventilated animals and reported on neuroinflammation or neuronal damage markers changes or cognitive-behavioural impairment. RESULTS Of 5583 studies, 11 met inclusion criteria. Mice, rats, pigs were used. Impact of MV: 4 out of 7 studies reported higher neuroinflammation markers in MV-treated animals and 3 studies reported no differences; 7 out of 8 studies reported a higher neuronal damage and 1 reported no differences; 2 out of 2 studies reported cognitive decline up to 3 days after MV. Higher Tidal volumes are associated with higher changes in brain or serum markers. CONCLUSION Preclinical evidence suggests that MV induces neuroinflammation, neuronal damage and cognitive impairment and these are worsened if sub-optimal MV settings are applied. Future studies, with appropriate methodology, are necessary to evaluate for serum monitoring strategies. TRIAL REGISTRATION NUMBER CRD42019148935.
Collapse
Affiliation(s)
- Giovanni Giordano
- Department of Anaesthesia and Intensive Care, Sapienza University of Rome, Roma, Italy.
| | - Francesco Pugliese
- Department of Anaesthesia and Intensive Care, Sapienza University of Rome, Roma, Italy
| | - Federico Bilotta
- Department of Anaesthesia and Intensive Care, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
7
|
Hippocampal Damage During Mechanical Ventilation in Trendelenburg Position: A Secondary Analysis of an Experimental Study on the Prevention of Ventilator-Associated Pneumonia. Shock 2020; 52:75-82. [PMID: 30052585 DOI: 10.1097/shk.0000000000001237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously corroborated benefits of the Trendelenburg position in the prevention of ventilator-associated pneumonia (VAP). We now investigate its potential effects on the brain versus the semirecumbent position. We studied 17 anesthetized pigs and randomized to be ventilated and positioned as follows: duty cycle (TI/TTOT) of 0.33, without positive end-expiratory pressure (PEEP), placed with the bed oriented 30° in anti-Trendelenburg (control group); positioned as in the control group, with TI/TTOT adjusted to achieve an expiratory flow bias, PEEP of 5 cm H2O (IRV-PEEP); positioned in 5° TP and ventilated as in the control group (TP). Animals were challenged into the oropharynx with Pseudomonas aeruginosa. We assessed hemodynamic parameters and systemic inflammation throughout the study. After 72 h, we evaluated incidence of microbiological/histological VAP and brain injury. Petechial hemorrhages score was greater in the TP group (P = 0.013). Analysis of the dentate gyrus showed higher cell apoptosis and deteriorating neurons in TP animals (P < 0.05 vs. the other groups). No differences in systemic inflammation were found among groups. Cerebral perfusion pressure was higher in TP animals (P < 0.001), mainly driven by higher mean arterial pressure. Microbiological/histological VAP developed in 0%, 67%, and 86% of the animals in the TP, control, and IRV-PEEP groups, respectively (P = 0.003). In conclusion, the TP prevents VAP; yet, we found deleterious neural effects in the dentate gyrus, likely associated with cerebrovascular modification in such position. Further laboratory and clinical studies are mandatory to appraise potential neurological risks associated with long-term TP.
Collapse
|
8
|
Double Cycling During Mechanical Ventilation: Frequency, Mechanisms, and Physiologic Implications. Crit Care Med 2019; 46:1385-1392. [PMID: 29985211 DOI: 10.1097/ccm.0000000000003256] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Double cycling generates larger than expected tidal volumes that contribute to lung injury. We analyzed the incidence, mechanisms, and physiologic implications of double cycling during volume- and pressure-targeted mechanical ventilation in critically ill patients. DESIGN Prospective, observational study. SETTING Three general ICUs in Spain. PATIENTS Sixty-seven continuously monitored adult patients undergoing volume control-continuous mandatory ventilation with constant flow, volume control-continuous mandatory ventilation with decelerated flow, or pressure control-continuous mandatory mechanical ventilation for longer than 24 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We analyzed 9,251 hours of mechanical ventilation corresponding to 9,694,573 breaths. Double cycling occurred in 0.6%. All patients had double cycling; however, the distribution of double cycling varied over time. The mean percentage (95% CI) of double cycling was higher in pressure control-continuous mandatory ventilation 0.54 (0.34-0.87) than in volume control-continuous mandatory ventilation with constant flow 0.27 (0.19-0.38) or volume control-continuous mandatory ventilation with decelerated flow 0.11 (0.06-0.20). Tidal volume in double-cycled breaths was higher in volume control-continuous mandatory ventilation with constant flow and volume control-continuous mandatory ventilation with decelerated flow than in pressure control-continuous mandatory ventilation. Double-cycled breaths were patient triggered in 65.4% and reverse triggered (diaphragmatic contraction stimulated by a previous passive ventilator breath) in 34.6% of cases; the difference was largest in volume control-continuous mandatory ventilation with decelerated flow (80.7% patient triggered and 19.3% reverse triggered). Peak pressure of the second stacked breath was highest in volume control-continuous mandatory ventilation with constant flow regardless of trigger type. Various physiologic factors, none mutually exclusive, were associated with double cycling. CONCLUSIONS Double cycling is uncommon but occurs in all patients. Periods without double cycling alternate with periods with clusters of double cycling. The volume of the stacked breaths can double the set tidal volume in volume control-continuous mandatory ventilation with constant flow. Gas delivery must be tailored to neuroventilatory demand because interdependent ventilator setting-related physiologic factors can contribute to double cycling. One third of double-cycled breaths were reverse triggered, suggesting that repeated respiratory muscle activation after time-initiated ventilator breaths occurs more often than expected.
Collapse
|
9
|
Two hit induced acute lung injury impairs cognitive function in mice: A potential model to study cross talk between lung and brain. Brain Behav Immun 2018; 73:633-642. [PMID: 30026058 DOI: 10.1016/j.bbi.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI), a pulmonary inflammatory disorder, is associated with high morbidity and mortality rates. Interestingly, ALI survivors have been reported for some neurocognitive deterioration at/after discharge. However, the molecular factors behind such extra pulmonary manifestation are not clearly known. The present work was designed to investigate lung-brain cross talk in experimental mice for deciphering primary molecular factors that may be involved in ALI-mediated cognitive impairment. ALI was induced in Balb/c mice by intra-tracheal administration of either 0.1 N HCl (2 ml/kg) or LPS (1 mg/kg) as single hits or both agents were administered successively to mimic the 'two hit' model. Interestingly two hit-mediated ALI resulted in exaggerated inflammatory response as reflected by increased pulmonary neutrophils and inflammatory factors (TNF-α/IL-1β/IL-6). Additionally, two hits resulted in delayed resolution of lung inflammation and was coupled with persistent decline in memory, as assessed by Morris water maze test. Further, two hits elevate serum levels of TNF-α/IL-1β which was associated with compromised blood brain barrier (BBB), as evident by decreased expression of occludin/claudin-5 and consequent Evans-blue extravasation in hippocampus 1 week post injury. Finally, dexamethasone protects against the two hit mediated cognitive impairment by lowering the pro-inflammatory factors (TNF-α/IL-1β) both in lungs and blood. Overall, we report for the first time that 'two hit' mediated ALI cause persistent cognitive impairment in mice partly via up-regulating systemic expression of TNF-α/IL-1β that may disrupt BBB and hence the model may be a useful tool to examine the lung-brain cross-talk at the molecular level for exploring newer therapeutics.
Collapse
|
10
|
Turon M, Fernández-Gonzalo S, de Haro C, Magrans R, López-Aguilar J, Blanch L. Mechanisms involved in brain dysfunction in mechanically ventilated critically ill patients: implications and therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:30. [PMID: 29430447 DOI: 10.21037/atm.2017.12.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Critical illness may lead to significant long-term neurological morbidity and patients frequently develop neuropsychological disturbances including acute delirium or memory impairment after intensive care unit (ICU) discharge. Mechanical ventilation (MV) is a risk factor to the development of adverse neurocognitive outcomes. Patients undergoing MV for long periods present neurologic impairment with memory and cognitive alteration. Delirium is considered an acute form of brain dysfunction and its prevalence rises in mechanically ventilated patients. Delirium duration is an independent predictor of mortality, ventilation time, ICU length of stay and short- and long-term cognitive impairment in the ICU survivors. Although, neurocognitive sequelae tend to improve after hospital discharge, residual deficits persist even 6 years after ICU stay. ICU-related neurocognitive impairments occurred in many cognitive domains and are particularly pronounced with regard to memory, executive functions, attentional functions, and processing speed. These sequelae have an important impact on patients' lives and ICU survivors often require institutionalization and hospitalization. Experimental studies have served to explore the possible mechanisms or pathways involved in this lung to brain interaction. This communication can be mediated via a complex web of signaling events involving neural, inflammatory, immunologic and neuroendocrine pathways. MV can affect respiratory networks and the application of protective ventilation strategies is mandatory in order to prevent adverse effects. Therefore, strategies focused to minimize lung stretch may improve outcomes, avoiding failure of distal organ, including the brain. Long-term neurocognitive impairments experienced by critically ill survivors may be mitigated by early interventions, combining cognitive and physical therapies. Inpatient rehabilitation interventions in ICU promise to improve outcomes in critically ill patients. The cross-talk between lung and brain, involving specific pathways during critical illness deserves further efforts to evaluate, prevent and improve cognitive alterations after ICU admission, and highlights the crucial importance of tailoring MV to prevent adverse outcomes.
Collapse
Affiliation(s)
- Marc Turon
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Sol Fernández-Gonzalo
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria de Haro
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Rudys Magrans
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina López-Aguilar
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Blanch
- Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Abstract
Sepsis-associated organ dysfunction involves multiple responses to inflammation, including endothelial and microvascular dysfunction, immune and autonomic dysregulation, and cellular metabolic reprogramming. The effect of targeting these mechanistic pathways on short- and long-term outcomes depends highly on the timing of therapeutic intervention. Furthermore, there is a need to understand the adaptive or maladaptive character of these mechanisms, to discover phase-specific biomarkers to guide therapy, and to conceptualize these mechanisms in terms of resistance and tolerance.
Collapse
Affiliation(s)
- Rachel Pool
- Department of Anesthesiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Hernando Gomez
- Center for Critical Care Nephrology, The CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh, 3347 Forbes Avenue, Suite 220, Pittsburgh, PA 15213, USA.
| | - John A Kellum
- Center for Critical Care Nephrology, The CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh, 3347 Forbes Avenue, Suite 220, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Fernandez-Gonzalo S, Turon M, De Haro C, López-Aguilar J, Jodar M, Blanch L. Do sedation and analgesia contribute to long-term cognitive dysfunction in critical care survivors? Med Intensiva 2017; 42:114-128. [PMID: 28851588 DOI: 10.1016/j.medin.2017.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 01/22/2023]
Abstract
Deep sedation during stay in the Intensive Care Unit (ICU) may have deleterious effects upon the clinical and cognitive outcomes of critically ill patients undergoing mechanical ventilation. Over the last decade a vast body of literature has been generated regarding different sedation strategies, with the aim of reducing the levels of sedation in critically ill patients. There has also been a growing interest in acute brain dysfunction, or delirium, in the ICU. However, the effect of sedation during ICU stay upon long-term cognitive deficits in ICU survivors remains unclear. Strategies for reducing sedation levels in the ICU do not seem to be associated with worse cognitive and psychological status among ICU survivors. Sedation strategy and management efforts therefore should seek to secure the best possible state in the mechanically ventilated patient and lower the prevalence of delirium, in order to prevent long-term cognitive alterations.
Collapse
Affiliation(s)
- S Fernandez-Gonzalo
- Research Department, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Fundació Parc Taulí, Corporació Sanitària Universitària ParcTaulí, Sabadell, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - M Turon
- Research Department, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Fundació Parc Taulí, Corporació Sanitària Universitària ParcTaulí, Sabadell, Spain; Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C De Haro
- Critical Care Department, ParcTaulí Sabadell, Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - J López-Aguilar
- Research Department, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Fundació Parc Taulí, Corporació Sanitària Universitària ParcTaulí, Sabadell, Spain; Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - M Jodar
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, International Excellence Campus, Bellaterra, Spain; Neurology Department, ParcTaulí Sabadell, Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| | - L Blanch
- Research Department, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Fundació Parc Taulí, Corporació Sanitària Universitària ParcTaulí, Sabadell, Spain; Centro de Investigación Biomédica En Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Critical Care Department, ParcTaulí Sabadell, Hospital Universitari, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain
| |
Collapse
|
13
|
Lung-brain cross talk in the critically ill. Intensive Care Med 2016; 43:557-559. [PMID: 27714405 DOI: 10.1007/s00134-016-4583-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
|