1
|
Zazzeron L. Phototherapy for carbon monoxide poisoning: origins, innovations, and future directions. Med Gas Res 2025; 15:204-205. [PMID: 40070191 PMCID: PMC11918464 DOI: 10.4103/mgr.medgasres-d-24-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/25/2024] [Indexed: 03/20/2025] Open
Affiliation(s)
- Luca Zazzeron
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Xu OW, Wang J, Alston TA. James Watt, of Steam Engine Fame, Offered Inhaled Carbon Monoxide for Putative Therapeutic Action. Anesth Analg 2025; 140:197-201. [PMID: 38507520 DOI: 10.1213/ane.0000000000006955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
James Watt (1736-1819) is remembered as a steam engine innovator and industrial magnate. A polymath, he was also a hands-on contributor to the Medical Pneumatic Institution of Thomas Beddoes. Watt recruited Humphry Davy, who there discovered analgesic action of inhaled nitrous oxide in 1799. Watt also built pneumatic equipment, and he introduced a gas mixture, dubbed hydro-carbonate, as a medical tonic. The bioactive component was carbon monoxide, a readily-lethal inhibitor of the transport and utilization of respiratory oxygen. Despite appreciable toxicity, carbon monoxide is an endogenous product of heme catabolism, and low doses of the gas are under laboratory investigation for therapeutic purposes. However, Watt's hydro-carbonate constituted a setback in the development of pharmacologically useful gases.
Collapse
Affiliation(s)
- Olivia W Xu
- From the Undergraduate College of Arts and Sciences, New York University, New York, New York
| | - Jingping Wang
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School at the Massachusetts General Hospital, Boston, Massachusetts
| | - Theodore A Alston
- College of Professional Studies, Northeastern University, Boston, Massachusetts
| |
Collapse
|
3
|
Wang T, Zhang Y. Mechanisms and therapeutic targets of carbon monoxide poisoning: A focus on reactive oxygen species. Chem Biol Interact 2024; 403:111223. [PMID: 39237073 DOI: 10.1016/j.cbi.2024.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Carbon monoxide (CO) poisoning presents a substantial public health challenge that necessitates the identification of its pathological mechanisms and therapeutic targets. CO toxicity arises from tissue hypoxia-ischemia secondary to carboxyhemoglobin formation, and cellular damage mediated by CO at the cellular level. The mitochondria are the major targets of neuronal damage caused by CO. Under normal physiological conditions, mitochondria produce reactive oxygen species (ROS), which are byproducts of aerobic metabolism. While low ROS levels are crucial for essential cellular functions, including signal transduction, differentiation, responses to hypoxia and immunity, transcriptional regulation, and autophagy, excess ROS become pathological and exacerbate CO poisoning. This review presents the evidence of elevated ROS being associated with the progression of CO poisoning. Antioxidant treatments targeting ROS removal have been proven effective in mitigating CO poisoning, underscoring their therapeutic potential. In this review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in CO poisoning. We focus on cellular sources of ROS, the molecular mechanisms underlying mitochondrial oxidative stress, and potential therapeutic strategies for targeting ROS in CO poisoning.
Collapse
Affiliation(s)
- Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yanli Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Zazzeron L, Franco W, Anderson R. Carbon monoxide poisoning and phototherapy. Nitric Oxide 2024; 146:31-36. [PMID: 38574950 PMCID: PMC11197981 DOI: 10.1016/j.niox.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.
Collapse
Affiliation(s)
- Luca Zazzeron
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, USA; Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rox Anderson
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Parker AL, Johnstone TC. Carbon monoxide poisoning: A problem uniquely suited to a medicinal inorganic chemistry solution. J Inorg Biochem 2024; 251:112453. [PMID: 38100903 DOI: 10.1016/j.jinorgbio.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.
Collapse
Affiliation(s)
- A Leila Parker
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States..
| |
Collapse
|
6
|
Liu CC, Hsu CS, He HC, Cheng YY, Chang ST. Effects of intravascular laser phototherapy on delayed neurological sequelae after carbon monoxide intoxication as evaluated by brain perfusion imaging: A case report and review of the literature. World J Clin Cases 2021; 9:3048-3055. [PMID: 33969090 PMCID: PMC8080739 DOI: 10.12998/wjcc.v9.i13.3048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Delayed neurological sequelae (DNS) caused by carbon monoxide (CO) intoxication poses considerable treatment challenges for clinical practitioners. In this report, we used nuclear medicine imaging and the Mini-Mental State Examination (MMSE) to evaluate the effectiveness of intravascular laser irradiation of blood (ILIB) therapy for the management of DNS.
CASE SUMMARY A 51-year-old woman presented to our medical center experiencing progressive bradykinesia, rigidity of limbs, gait disturbance, and cognitive impairment. Based on her neurological deficits, laboratory tests and imaging findings, the patient was diagnosed with delayed neurological sequelae of CO intoxication. She received intensive rehabilitation and ILIB therapy during 30 sessions over 2 mo after diagnosis. Brain single-photon emission computed tomography was performed both prior to and after ILIB therapy. The original hypoperfusion area in bilateral striata, bilateral frontal lobe, right parietal lobe, and bilateral cerebellum showed considerable improvement after completion of therapy. The patient’s MMSE score also increased markedly from 6/30 to 25/30. Symptoms of DNS became barely detectable, and the woman was able to carry out her daily living activities independently.
CONCLUSION ILIB therapy could facilitate recovery from delayed neurological sequelae in patients with CO intoxication, as demonstrated by improved cerebral blood flow and functional outcomes in our patient.
Collapse
Affiliation(s)
- Chuan-Ching Liu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chun-Sheng Hsu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Hsin-Chen He
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yuan-Yang Cheng
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
7
|
Yu S, You X, Liang H, Li Y, Fu Y, Zhang X, Hu X, An J, Xu Y, Li F. First trimester placental mesenchymal stem cells improve cardiac function of rat after myocardial infarction via enhanced neovascularization. Heliyon 2021; 7:e06120. [PMID: 33553765 PMCID: PMC7855719 DOI: 10.1016/j.heliyon.2021.e06120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Acute myocardial infarction (AMI) is the most critical heart disease. Mesenchymal stem cells (MSCs) have been widely used as a therapy for AMI for several years. The human placenta has emerged as a valuable source of transplantable cells of mesenchymal origin that can be used for multiple cytotherapeutic purposes. However, the different abilities of first trimester placental chorion mesenchymal stem cells (FCMSCs) and third trimester placental chorion mesenchymal stem cells (TCMSCs) have not yet been explored. In this study, we aimed to compare the effectiveness of FCMSCs and TCMSCs on the treatment of AMI. FCMSCs and TCMSCs were isolated and characterized, and then they were subjected to in vitro endothelial cell (EC) differentiation induction and tube formation to evaluate angiogenic ability. Moreover, the in vivo effects of FCMSCs and TCMSCs on cardiac improvement were also evaluated in a rat MI model. Both FCSMCs and TCMSCs expressed a series of MSCs surface markers. After differentiation induction, FCMSCs-derived EC (FCMSCs-EC) exhibited morphology that was more similar to that of ECs and had higher CD31 and vWF levels than TCMSCs-EC. Furthermore, tube formation could be achieved by FCMSCs-EC that was significantly better than that of TCMSCs-EC. Especially, FCMSCs-EC expressed higher levels of pro-angiogenesis genes, PDGFD, VEGFA, and TNC, and lower levels of anti-angiogenesis genes, SPRY1 and ANGPTL1. In addition, cardiac improvement, indicated by left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic diameter (LVEDs), left ventricular ejection fraction (LVEF) and left ventricular shortening fraction (LVSF), could be observed following treatment with FCMSCs, and it was superior to that of TCMSCs and Bone marrow MSCs (BMSCs). FCMSCs exhibited a superior ability to generate EC differentiation, as evidenced by in vitro morphology, angiogenic potential and in vivo cardiac function improvement; further, increased levels of expression of pro-angiogenesis genes may be the mechanism by which this effect occurred.
Collapse
Affiliation(s)
- Shuichang Yu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinran You
- Department of Nuclear Medicine, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Li
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Zhang
- Department of Gynaecology and Obstetrics, TuHa Petroleum Hospital, Xinjiang, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jinnan An
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yunyun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Zazzeron L, Fischbach A, Franco W, Farinelli WA, Ichinose F, Bloch DB, Anderson RR, Zapol WM. Phototherapy and extracorporeal membrane oxygenation facilitate removal of carbon monoxide in rats. Sci Transl Med 2020; 11:11/513/eaau4217. [PMID: 31597752 DOI: 10.1126/scitranslmed.aau4217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/02/2019] [Accepted: 09/18/2019] [Indexed: 11/02/2022]
Abstract
Inhaled carbon monoxide (CO) displaces oxygen from hemoglobin, reducing the capacity of blood to carry oxygen. Current treatments for CO-poisoned patients involve administration of 100% oxygen; however, when CO poisoning is associated with acute lung injury secondary to smoke inhalation, burns, or trauma, breathing 100% oxygen may be ineffective. Visible light dissociates CO from hemoglobin. We hypothesized that the exposure of blood to visible light while passing through a membrane oxygenator would increase the rate of CO elimination in vivo. We developed a membrane oxygenator with optimal characteristics to facilitate exposure of blood to visible light and tested the device in a rat model of CO poisoning, with or without concomitant lung injury. Compared to ventilation with 100% oxygen, the addition of extracorporeal removal of CO with phototherapy (ECCOR-P) doubled the rate of CO elimination in CO-poisoned rats with normal lungs. In CO-poisoned rats with acute lung injury, treatment with ECCOR-P increased the rate of CO removal by threefold compared to ventilation with 100% oxygen alone and was associated with improved survival. Further development and adaptation of this extracorporeal CO photo-removal device for clinical use may provide additional benefits for CO-poisoned patients, especially for those with concurrent acute lung injury.
Collapse
Affiliation(s)
- Luca Zazzeron
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anna Fischbach
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Walfre Franco
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William A Farinelli
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Brenner M, Wang P. What'S New in SHOCK, June 2017? Shock 2017; 47:661-665. [PMID: 28505019 DOI: 10.1097/shk.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | | |
Collapse
|