1
|
Khan MA, Salvi T, Beyer GJ, Abdalbaqi A, Allyn M, Bresolin A, Palmer AF. Scalable Production and Biophysical Characterization of High-Molecular-Weight Relaxed and Tense Quaternary State Polymerized Human Hemoglobin as Potential Red Blood Cell Substitutes. Biomacromolecules 2024; 25:7334-7348. [PMID: 39477826 DOI: 10.1021/acs.biomac.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
High-molecular-weight (HMW) (>500 kDa) glutaraldehyde-polymerized human hemoglobin (PolyhHb) is a promising hemoglobin-based oxygen carrier (HBOC) due to its decreased risk of vasoconstriction and oxidative tissue injury. Previously, HMW tense (T) quaternary state PolyhHb was synthesized at the pilot scale with tangential flow filtration (TFF) for the removal of low-molecular-weight species. However, T-state PolyhHb is limited to specific biomedical applications due to its low oxygen affinity, thus motivating the need to produce high oxygen affinity relaxed (R) quaternary state PolyhHb at the pilot scale. This study explored the pilot-scale synthesis and extensive biophysical characterization of both HMW T- and R-state PolyhHb. The resultant characterization demonstrated the successful synthesis of low and high oxygen affinity PolyhHb with increased molecular weight (∼1000-1500 kDa). Overall, T- and R-state PolyhHb provides a platform for manufacturing oxygen therapeutics with a diverse range of oxygen affinities and potential biomedical applications.
Collapse
Affiliation(s)
- Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tanmay Salvi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Griffin J Beyer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amna Abdalbaqi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Megan Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alejandro Bresolin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Mancebo JG, Sack K, Hartford J, Dominguez S, Balcarcel-Monzon M, Chartier E, Nguyen T, Cole AR, Sperotto F, Harrild DM, Polizzotti BD, Everett AD, Packard AB, Dearling J, Nedder AG, Warfield S, Yang E, Lidov HGW, Kheir JN, Peng Y. Systemically injected oxygen within rapidly dissolving microbubbles improves the outcomes of severe hypoxaemia in swine. Nat Biomed Eng 2024; 8:1396-1411. [PMID: 39420063 PMCID: PMC11584390 DOI: 10.1038/s41551-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Acute respiratory failure can cause profound hypoxaemia that leads to organ injury or death within minutes. When conventional interventions are ineffective, the intravenous administration of oxygen can rescue patients from severe hypoxaemia, but at the risk of microvascular obstruction and of toxicity of the carrier material. Here we describe polymeric microbubbles as carriers of high volumes of oxygen (350-500 ml of oxygen per litre of foam) that are stable in storage yet quickly dissolve following intravenous injection, reverting to their soluble and excretable molecular constituents. In swine with profound hypoxaemia owing to acute and temporary (12 min) upper-airway obstruction, the microbubble-mediated delivery of oxygen led to: the maintenance of critical oxygenation, lowered burdens of cardiac arrest, improved survival, and substantially improved neurologic and kidney function in surviving animals. Our findings underscore the importance of maintaining a critical threshold of oxygenation and the promise of injectable oxygen as a viable therapy in acute and temporary hypoxaemic crises.
Collapse
Affiliation(s)
- Julia Garcia Mancebo
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kristen Sack
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jay Hartford
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Saffron Dominguez
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Tien Nguyen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Alexis R Cole
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Francesca Sperotto
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Brian D Polizzotti
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Allen D Everett
- Department of Pediatrics, Blalock-Taussig-Thomas Congenital Heart Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alan B Packard
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jason Dearling
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Arthur G Nedder
- Animal Resources at Children's Hospital, Boston Children's Hospital, Boston, MA, USA
| | - Simon Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Yifeng Peng
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cuddington C, Greenfield A, Lee YG, Kim JL, Lamb D, Buehler PW, Black SM, Palmer AF, Whitson BA. Polymerized Human Hemoglobin-Based Oxygen Carrier Preserves Lung Allograft Function During Normothermic Ex Vivo Lung Perfusion. ASAIO J 2024; 70:442-450. [PMID: 38266069 PMCID: PMC11062835 DOI: 10.1097/mat.0000000000002118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Normothermic ex vivo lung perfusion (EVLP) can resuscitate marginal lung allografts to increase organs available for transplantation. During normothermic perfusion, cellular metabolism is more active compared with subnormothermic perfusion, creating a need for an oxygen (O 2 ) carrier in the perfusate. As an O 2 carrier, red blood cells (RBCs) are a scarce resource and are susceptible to hemolysis in perfusion circuits, thus releasing cell-free hemoglobin (Hb), which can extravasate into the tissue space, thus promoting scavenging of nitric oxide (NO) and oxidative tissue damage. Fortunately, polymerized human Hb (PolyhHb) represents a synthetic O 2 carrier with a larger molecular diameter compared with Hb, preventing extravasation, and limiting adverse reactions. In this study, a next-generation PolyhHb-based perfusate was compared to both RBC and asanguinous perfusates in a rat EVLP model. During EVLP, the pulmonary arterial pressure and pulmonary vascular resistance were both significantly higher in lungs perfused with RBCs, which is consistent with RBC hemolysis. Lungs perfused with PolyhHb demonstrated greater oxygenation than those perfused with RBCs. Post-EVLP analysis revealed that the PolyhHb perfusate elicited less cellular damage, extravasation, iron tissue deposition, and edema than either RBCs or colloid control. These results show promise for a next-generation PolyhHb to maintain lung function throughout EVLP.
Collapse
Affiliation(s)
- Clayton Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University
| | - Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University
| | - Yong Gyu Lee
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
| | - Jung Lye Kim
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
| | - Derek Lamb
- Departments of Pathology and Pediatrics, Center for Blood Oxygen Transport Hemostasis, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Paul W. Buehler
- Departments of Pathology and Pediatrics, Center for Blood Oxygen Transport Hemostasis, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Sylvester M. Black
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University
| | - Bryan A. Whitson
- Department of Surgery, The Ohio State University Wexner Medical Center
- The Collaboration for Organ Perfusion, Preservation, Engineering and Regeneration (COPPER) Laboratory
- The Davis Heart and Lung Research Institute at The Ohio State University Wexner Medical, College of Medicine
| |
Collapse
|
4
|
Jani VP, Jani VP, Munoz C, Cabrales P. A mathematical model of tissue axial and radial diffusion in the microvasculature for intravascular microscopy and phosphorescence quenching data. Comput Biol Med 2024; 174:108406. [PMID: 38603898 DOI: 10.1016/j.compbiomed.2024.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
This study aims to extend earlier Krogh Cylinder Models of an oxygen profile by considering axial diffusion and analytically solving Fick's Law Partial Differential Equation with novel boundary conditions via the separation of variables. We next prospectively collected a total of 20 animals, which were randomly assigned to receive either fresh or two-week-old stored red blood cell (RBC) transfusions and PQM oxygen data were measured acutely (90 min) or chronically (24 h). Transfusion effects were evaluated in vivo using intravital microscopy of the dorsal skinfold window chamber in Golden Syrian Hamsters. Hamsters were initially hemorrhaged by 50% of total blood volume and resuscitated 1-h post hemorrhage. PQM data were subsequently collected and fit the derived 2D Krogh cylinder model. Systemic hemodynamics (mean arterial pressure, heart rate) were similar in both pre and post-transfusion with either stored or fresh cells. Transfusion with stored cells was found to impair axial and radial oxygen gradients as quantified by our model and consistent with previous studies. Specifically, we observed a statistically significant decrease in the arteriolar tissue radial oxygen gradient after transfusion with stored RBCs at 24 h compared with fresh RBCs (0.33 ± 0.17 mmHg μ m-1 vs, 0.14 ± 0.12 mmHg μ m-1; p = 0.0280). We also observed a deficit in the arteriolar tissue oxygen gradient (0.03 ± 0.01 mmHg μ m-1 fresh vs. 0.018 ± 0.007 mmHg μ m-1 stored; p = 0.0185). We successfully derived and validated an analytical 2D Krogh cylinder model in an animal model of microhemodynamic oxygen diffusion aberration secondary to storage lesions.
Collapse
Affiliation(s)
- Vinay P Jani
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Vivek P Jani
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carlos Munoz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
| |
Collapse
|
5
|
Lamb DR, Greenfield A, Thangaraju K, Setua S, Eiker G, Wang Q, Vahedi A, Khan MA, Yahya A, Cabrales P, Palmer AF, Buehler PW. The Molecular Size of Bioengineered Oxygen Carriers Determines Tissue Oxygenation in a Hypercholesterolemia Guinea Pig Model of Hemorrhagic Shock and Resuscitation. Mol Pharm 2023; 20:5739-5752. [PMID: 37843033 DOI: 10.1021/acs.molpharmaceut.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Polymerized human hemoglobin (PolyhHb) has shown promise in preclinical hemorrhagic shock settings. Different synthetic and purification schemes can control the size of PolyhHbs, yet research is lacking on the impact of polymerized hemoglobin size on tissue oxygenation following hemorrhage and resuscitation in specialized animal models that challenge their resuscitative capabilities. Pre-existing conditions that compromise the vasculature and end organs, such as the liver, may limit the effectiveness of resuscitation and exacerbate the toxicity of these molecules, which is an important but minimally explored therapeutic dimension. In this study, we compared the effective oxygen delivery of intermediate molecular weight PolyhHb (PolyhHb-B3; 500-750 kDa) to high molecular weight PolyhHb (PolyhHb-B4; 750 kDa-0.2 μm) for resuscitative effectiveness in guinea pig models subjected to hemorrhagic shock. We evaluated how the size of PolyhHb impacts hemodynamics and tissue oxygenation in normal guinea pigs and guinea pigs on an atherogenic diet. We observed that while PolyhHb-B3 and -B4 equivalently restore hemodynamic parameters of normal-dieted guinea pigs, high-fat-dieted guinea pigs resuscitated with PolyhHb-B4 have lower mean arterial pressures, impaired tissue oxygenation, and higher plasma lactate levels than those receiving PolyhHb-B3. We characterized the plasma of these animals following resuscitation and found that despite similar oxygen delivery kinetics, circulating PolyhHb-B3 and -B4 demonstrated a size-dependent increase in the plasma viscosity, consistent with impaired perfusion in the PolyhHb-B4 transfusion group. We conclude that intermediate-sized PolyhHbs (such as -B3) are ideal for further research given the effective resuscitation of hemorrhagic shock based on tissue oxygenation in hypercholesterolemic guinea pigs.
Collapse
Affiliation(s)
- Derek R Lamb
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Saini Setua
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Gena Eiker
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Qihong Wang
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Amid Vahedi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
- Department of Pathology, University of Maryland School of Medicine, 10 S Pine St # 700A, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Muller CR, Courelli V, Walser C, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Polymerized human hemoglobin with low and high oxygen affinity in trauma models. Transl Res 2023; 260:83-92. [PMID: 37268039 DOI: 10.1016/j.trsl.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
The present study aimed to compare the ability of tense (T) and relaxed (R) quaternary state polymerized human hemoglobin (PolyhHb) to restore hemodynamics after severe trauma in a rat model, and to assess their relative toxicity in a guinea pigs (GPs). To assess the efficacy of these PolyhHbs in restoring hemodynamics, Wistar rats were subjected to traumatic brain injury (TBI) followed by hemorrhagic shock (HS). Animals were separated into 3 groups based on the resuscitation solution: Whole blood, T-state or R-state PolyhHb, and followed for 2 hours after resuscitation. For toxicity evaluation, GPs were subjected to HS and the hypovolemic state was maintained for 50 minutes. Then, the GPs were divided randomly into 2 groups, and reperfused with T- or R-state PolyhHb. Rats resuscitated with blood and T-state PolyhHb had a higher recovery of MAP at 30 min after resuscitation when compared to R-state PolyhHb, demonstrating the greater ability of T-state PolyhHb to restore hemodynamics compared to R-state PolyhHb. Resuscitation with R-state PolyhHb in GPs increased markers of liver damage and inflammation, kidney injury and systemic inflammation compared to the T-state PolyhHb group. Finally, increased levels of cardiac damage markers, such as troponin were observed, indicating greater cardiac injury in GPs resuscitated with R-state PolyhHb. Therefore, our results showed that T-state PolyhHb exhibited superior efficacy in a model of TBI followed by HS in rats, and presented reduced vital organ toxicity in GPs, when compared to R-state PolyhHb.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California San Diego, San Diego, CA.
| | - Vasiliki Courelli
- Department of Bioengineering, University of California San Diego, San Diego, CA
| | - Cynthia Walser
- Department of Bioengineering, University of California San Diego, San Diego, CA
| | - Clayton T Cuddington
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Savannah R Wolfe
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, San Diego, CA
| |
Collapse
|
7
|
Greenfield A, Lamb DR, Gu X, Thangaraju K, Setua S, Yahya A, Vahedi A, Khan MA, Wang Q, Buehler PW, Palmer AF. Biophysical Analysis and Preclinical Pharmacokinetics-Pharmacodynamics of Tangential Flow Filtration Fractionated Polymerized Human Hemoglobin as a Red Blood Cell Substitute. Biomacromolecules 2023; 24:1855-1870. [PMID: 36877888 DOI: 10.1021/acs.biomac.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 μm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.
Collapse
Affiliation(s)
- Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Derek R Lamb
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kiruphagaran Thangaraju
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Saini Setua
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Amid Vahedi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Qihong Wang
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Paul W Buehler
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Muller CR, Williams AT, Walser C, Eaker AM, Sandoval JL, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Safety and efficacy of human polymerized hemoglobin on guinea pig resuscitation from hemorrhagic shock. Sci Rep 2022; 12:20480. [PMID: 36443351 PMCID: PMC9703428 DOI: 10.1038/s41598-022-23926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
For the past thirty years, hemoglobin-based oxygen carriers (HBOCs) have been under development as a red blood cell substitute. Side-effects such as vasoconstriction, oxidative injury, and cardiac toxicity have prevented clinical approval of HBOCs. Recently, high molecular weight (MW) polymerized human hemoglobin (PolyhHb) has shown positive results in rats. Studies have demonstrated that high MW PolyhHb increased O2 delivery, with minimal effects on blood pressure, without vasoconstriction, and devoid of toxicity. In this study, we used guinea pigs to evaluate the efficacy and safety of high MW PolyhHb, since like humans guinea pigs cannot produce endogenous ascorbic acid, which limits the capacity of both species to deal with oxidative stress. Hence, this study evaluated the efficacy and safety of resuscitation from severe hemorrhagic shock with high MW PolyhHb, fresh blood, and blood stored for 2 weeks. Animals were randomly assigned to each experimental group, and hemorrhage was induced by the withdrawal of 40% of the blood volume (BV, estimated as 7.5% of body weight) from the carotid artery catheter. Hypovolemic shock was maintained for 50 min. Resuscitation was implemented by infusing 25% of the animal's BV with the different treatments. Hemodynamics, blood gases, total hemoglobin, and lactate were not different before hemorrhage and during shock between groups. The hematocrit was lower for the PolyhHb group compared to the fresh and stored blood groups after resuscitation. Resuscitation with stored blood had lower blood pressure compared to fresh blood at 2 h. There was no difference in mean arterial pressure between groups at 24 h. Resuscitation with PolyhHb was not different from fresh blood for most parameters. Resuscitation with PolyhHb did not show any remarkable change in liver injury, inflammation, or cardiac damage. Resuscitation with stored blood showed changes in liver function and inflammation, but no kidney injury or systemic inflammation. Resuscitation with stored blood after 24 h displayed sympathetic hyper-activation and signs of cardiac injury. These results suggest that PolyhHb is an effective resuscitation alternative to blood. The decreased toxicities in terms of cardiac injury markers, vital organ function, and inflammation following PolyhHb resuscitation in guinea pigs indicate a favorable safety profile. These results are promising and support future studies with this new generation of PolyhHb as alternative to blood when blood is unavailable.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Cynthia Walser
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Allyn M Eaker
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Jose Luis Sandoval
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA.
| |
Collapse
|
9
|
Cuddington CT, Wolfe SR, Palmer AF. Biophysical properties of tense quaternary state polymerized human hemoglobins bracketed between 500 kDa and 0.2 μm in size. Biotechnol Prog 2022; 38:e3219. [PMID: 34626100 PMCID: PMC8854340 DOI: 10.1002/btpr.3219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Polymerized hemoglobin (Hb)-based oxygen carriers (HBOCs) are a scalable and cost-effective red blood cell (RBC) substitute. However, previous generations of commercial polymerized HBOCs elicited oxidative tissue injury in vivo due to the presence of low molecular weight polymeric Hb species (<500 kDa) and cell-free Hb (64 kDa). Polymerized human Hb (PolyhHb) locked in the tense quaternary state (T-state) exhibits great promise to meet clinical needs where past polymerized HBOCs failed. This work shows that separation of T-state PolyhHb via a two-stage tangential flow filtration (TFF) purification train such that the Hb polymers are bracketed between 500 kDa and 0.2 μm creates a uniform polymer size and largely eliminates the Hb species which elicit deleterious side effects in vivo. Biophysical characterization of these materials demonstrates their potential effectiveness as an RBC substitute and verifies the low percentage of low molecular weight Hb polymers and cell-free Hb. Size exclusion chromatography confirms that T-state PolyhHb can be consistently produced in a size range between 500 kDa and 0.2 μm. Furthermore, the average molecular weight of all PolyhHb species produced is one or two orders of magnitude larger than that of the commercial polymerized HBOCs Hemolink and Oxyglobin, respectively. Haptoglobin binding kinetics confirms that two-stage TFF processing of PolyhHb reliably removes cell-free Hb and low molecular weight polymeric Hb species. T-state PolyhHbs demonstrate lower auto-oxidation rates compared to unmodified Hb and prior generations of commercial polymerized HBOCs. These results demonstrate T-state PolyhHb's feasibility as a next-generation polymerized HBOC for potential use in transfusion medicine.
Collapse
Affiliation(s)
- Clayton T. Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, OH, 43210
| | - Savannah R. Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, OH, 43210
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, OH, 43210
| |
Collapse
|
10
|
Gu X, Savla C, Palmer AF. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties. Biotechnol Bioeng 2022; 119:176-186. [PMID: 34672363 PMCID: PMC8643326 DOI: 10.1002/bit.27962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
11
|
What's New in Shock, October 2020? Shock 2021; 54:413-415. [PMID: 32925708 DOI: 10.1097/shk.0000000000001626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Gulati A, Choudhuri R, Gupta A, Singh S, Ali SKN, Sidhu GK, Haque PD, Rahate P, Bothra AR, Singh GP, Maheshwari S, Jeswani D, Haveri S, Agarwal A, Agrawal NR. A Multicentric, Randomized, Controlled Phase III Study of Centhaquine (Lyfaquin ®) as a Resuscitative Agent in Hypovolemic Shock Patients. Drugs 2021; 81:1079-1100. [PMID: 34061314 PMCID: PMC8167383 DOI: 10.1007/s40265-021-01547-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Introduction Centhaquine (Lyfaquin®) showed significant safety and efficacy in preclinical and clinical phase I and II studies. Methods A prospective, multicentric, randomized phase III study was conducted in patients with hypovolemic shock, systolic blood pressure (SBP) ≤ 90 mmHg, and blood lactate levels ≥ 2 mmol/L. Patients were randomized in a 2:1 ratio to the centhaquine group (n = 71) or the control (saline) group (n = 34). Every patient received standard of care (SOC) and was followed for 28 days. The study drug (normal saline or centhaquine 0.01 mg/kg) was administered in 100 mL of normal saline infusion over 1 h. The primary objectives were to determine changes (mean through 48 h) in SBP, diastolic blood pressure (DBP), blood lactate levels, and base deficit. The secondary objectives included the amount of fluids, blood products, and vasopressors administered in the first 48 h, duration of hospital stay, time in intensive care units, time on ventilator support, change in acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and the proportion of patients with 28-day all-cause mortality. Results The demographics of patients and baseline vitals in both groups were comparable. The cause of hypovolemic shock was trauma in 29.4 and 47.1% of control group and centhaquine group patients, respectively, and gastroenteritis in 44.1 and 29.4%, respectively. Shock index (SI) and quick sequential organ failure assessment at baseline were similar in the two groups. An equal amount of fluids and blood products were administered in both groups during the first 48 h of resuscitation. A lesser amount of vasopressors was needed in the first 48 h of resuscitation in the centhaquine group. An increase in SBP from baseline was consistently higher up to 48 h (12.9% increase in area under the curve from 0 to 48 h [AUC0–48]) in the centhaquine group than in the control group. A significant increase in pulse pressure (48.1% increase in AUC0–48) in the centhaquine group compared with the control group suggests improved stroke volume due to centhaquine. The SI was significantly lower in the centhaquine group from 1 h (p = 0.032) to 4 h (p = 0.049) of resuscitation. Resuscitation with centhaquine resulted in a significantly greater number of patients with improved blood lactate (control 46.9%; centhaquine 69.3%; p = 0.03) and the base deficit (control 43.7%; centhaquine 69.8%; p = 0.01) than in the control group. ARDS and MODS improved with centhaquine, and an 8.8% absolute reduction in 28-day all-cause mortality was observed in the centhaquine group. Conclusion Centhaquine is an efficacious resuscitative agent for treating hypovolemic shock. The efficacy of centhaquine in distributive shock is being explored. Trial Registration Clinical Trials Registry, India; ctri.icmr.org.in, CTRI/2019/01/017196; clinicaltrials.gov, NCT04045327. Supplementary Information The online version contains supplementary material available at 10.1007/s40265-021-01547-5.
Collapse
Affiliation(s)
- Anil Gulati
- Pharmazz, Inc., 50 West 75th Street, Suite 105, Willowbrook, IL, 60527, USA.
| | - Rajat Choudhuri
- Institute of Postgraduate Medical Education and Research/SSKM Hospital, Kolkata, West Bengal, India
| | - Ajay Gupta
- Chiranjeev Medical Centre, Jhansi, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S K Noushad Ali
- ACSR Government Medical College and Hospital, Nellore, Andhra Pradesh, India
| | | | | | | | - Aditya R Bothra
- Rahate Surgical Hospital and ICU, Nagpur, Maharashtra, India
| | - Gyan P Singh
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sanjiv Maheshwari
- Jawahar Lal Nehru Medical College and Attached Hospital, Ajmer, Rajasthan, India
| | - Deepak Jeswani
- Criticare Hospital and Research Institute, Nagpur, Maharashtra, India
| | - Sameer Haveri
- KLE's Dr. Prabhakar Kore Hospital and Medical Research Centre, Belgaum, Karnataka, India
| | | | | |
Collapse
|
13
|
Gulati A, Choudhuri R, Gupta A, Singh S, Noushad Ali SK, Sidhu GK, Haque PD, Rahate P, Bothra AR, Singh GP, Maheshwari S, Jeswani D, Haveri S, Agarwal A, Agrawal NR. A multicentric, randomized, controlled phase III study of centhaquine (Lyfaquin ® ) as a resuscitative agent in hypovolemic shock patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.07.30.20068114. [PMID: 33173916 PMCID: PMC7654912 DOI: 10.1101/2020.07.30.20068114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Centhaquine (Lyfaquin ® ) showed significant safety and efficacy in preclinical and clinical phase I and II studies. METHODS A prospective, multicentric, randomized phase III study was conducted in patients with hypovolemic shock having systolic blood pressure (SBP) of ≤90 mm Hg and blood lactate levels of ≥2 mmol/L. Patients were randomized in a 2:1 ratio, 71 patients to the centhaquine group and 34 patients to the control (saline) group. Every patient received standard of care (SOC) and was followed for 28 days. The study drug (normal saline or centhaquine (0.01 mg/kg)) was administered in 100 mL of normal saline infusion over 1 hour. The primary objectives were to determine changes (mean through 48 hours) in SBP, diastolic blood pressure (DBP), blood lactate levels, and base deficit. The secondary objectives included the amount of fluids, blood products, vasopressors administered in the first 48 hours, duration of hospital stay, time in ICU, time on the ventilator support, change in patient's Acute Respiratory Distress Syndrome (ARDS), Multiple Organ Dysfunction Syndrome (MODS) scores, and the proportion of patients with 28-day all-cause mortality. RESULTS The demographics of patients and baseline vitals in both groups were comparable. Trauma was the cause of hypovolemic shock in 29.41% of control and 47.06% of centhaquine, gastroenteritis in 44.12% of control, and 29.41% of centhaquine patients. An equal amount of fluids and blood products were administered in both groups during the first 48 hours of resuscitation. A lesser amount of vasopressors was needed in the first 48 hours of resuscitation in the centhaquine group. An increase in SBP from the baseline was consistently higher in the centhaquine group than in the control. A significant increase in pulse pressure in the centhaquine group than the control group suggests improved stroke volume due to centhaquine. The shock index was significantly lower in the centhaquine group than control from 1 hour (p=0.0320) till 4 hours (p=0.0494) of resuscitation. Resuscitation with centhaquine had a significantly greater number of patients with improved blood lactate and the base deficit than the control group. ARDS and MODS improved with centhaquine, and an 8.8% absolute reduction in 28-day all-cause mortality was observed in the centhaquine group. CONCLUSION Centhaquine is a highly efficacious resuscitative agent for treating hypovolemic shock. The efficacy of centhaquine in distributive shock due to sepsis and COVID-19 is being explored. TRIAL REGISTRATION Clinical Trials Registry, India; ctri.icmr.org.in, CTRI/2019/01/017196; clinicaltrials.gov, NCT04045327 . KEY SUMMARY POINTS A multicentric, randomized, controlled trial was conducted to evaluate the efficacy of centhaquine in hypovolemic shock patients.One hundred and five patients were randomized 2:1 to receive centhaquine or saline. Centhaquine was administered at a dose of 0.01 mg/kg in 100 mL saline and infused over 1 hour. The control group received 100 mL of saline over a 1-hour infusion.Centhaquine improved blood pressure, shock index, reduced blood lactate levels, and improved base deficit. Acute Respiratory Distress Syndrome (ARDS) and Multiple Organ Dysfunction Syndrome (MODS) score improved with centhaquine.An 8.8% absolute reduction in 28-day all-cause mortality was observed in the centhaquine group. There were no drug-related adverse events in the study.
Collapse
|
14
|
Muller CR, Courelli V, Lucas A, Williams AT, Li JB, Dos Santos F, Cuddington CT, Moses SR, Palmer AF, Kistler EB, Cabrales P. Resuscitation from hemorrhagic shock after traumatic brain injury with polymerized hemoglobin. Sci Rep 2021; 11:2509. [PMID: 33510204 PMCID: PMC7843604 DOI: 10.1038/s41598-021-81717-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) is often accompanied by hemorrhage, and treatment of hemorrhagic shock (HS) after TBI is particularly challenging because the two therapeutic treatment strategies for TBI and HS often conflict. Ischemia/reperfusion injury from HS resuscitation can be exaggerated by TBI-induced loss of autoregulation. In HS resuscitation, the goal is to restore lost blood volume, while in the treatment of TBI the priority is focused on maintenance of adequate cerebral perfusion pressure and avoidance of secondary bleeding. In this study, we investigate the responses to resuscitation from severe HS after TBI in rats, using fresh blood, polymerized human hemoglobin (PolyhHb), and lactated Ringer's (LR). Rats were subjected to TBI by pneumatic controlled cortical impact. Shortly after TBI, HS was induced by blood withdrawal to reduce mean arterial pressure (MAP) to 35-40 mmHg for 90 min before resuscitation. Resuscitation fluids were delivered to restore MAP to ~ 65 mmHg and animals were monitored for 120 min. Increased systolic blood pressure variability (SBPV) confirmed TBI-induced loss of autoregulation. MAP after resuscitation was significantly higher in the blood and PolyhHb groups compared to the LR group. Furthermore, blood and PolyhHb restored diastolic pressure, while this remained depressed for the LR group, indicating a loss of vascular tone. Lactate increased in all groups during HS, and only returned to baseline level in the blood reperfused group. The PolyhHb group possessed lower SBPV compared to LR and blood groups. Finally, sympathetic nervous system (SNS) modulation was higher for the LR group and lower for the PolyhHb group compared to the blood group after reperfusion. In conclusion, our results suggest that PolyhHb could be an alternative to blood for resuscitation from HS after TBI when blood is not available, assuming additional testing demonstrate similar favorable results. PolyhHb restored hemodynamics and oxygen delivery, without the logistical constraints of refrigerated blood.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Vasiliki Courelli
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alfredo Lucas
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Joyce B Li
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Fernando Dos Santos
- Department of Anesthesiology and Critical Care, University of California San Diego, San Diego, CA, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Moses
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Erik B Kistler
- Department of Anesthesiology and Critical Care, University of California San Diego, San Diego, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA.
| |
Collapse
|
15
|
Abstract
Fluids are a vital tool in the armament of acute care clinicians in both civilian and military resuscitation. We now better understand complications from inappropriate resuscitation with currently available fluids; however, fluid resuscitation undeniably remains a life-saving intervention. Military research has driven the most significant advances in the field of fluid resuscitation and is currently leading the search for the fluids of the future. The veterinary community, much like our civilian human counterparts, should expect the fluid of the future to be the fruit of military research. The fluids of the future not only are expected to improve patient outcomes but also be field expedient. Those fluids should be compatible with military environments or natural disaster environments. For decades, military personnel and disaster responders have faced the peculiar demands of austere environments, prolonged field care, and delayed evacuation. Large scale natural disasters present field limitations often similar to those encountered in the battlefield. The fluids of the future should, therefore, have a long shelf-life, a small footprint, and be resistant to large temperature swings, for instance. Traumatic brain injury and hemorrhagic shock are the leading causes of preventable death for military casualties and a significant burden in civilian populations. The military and civilian health systems are focusing efforts on field-expedient fluids that will be specifically relevant for the management of those conditions. Fluids are expected to be compatible with blood products, increase oxygen-carrying capabilities, promote hemostasis, and be easy to administer in the prehospital setting, to match the broad spectrum of current acute care challenges, such as sepsis and severe systemic inflammation. This article will review historical military and civilian contributions to current resuscitation strategies, describe the expectations for the fluids of the future, and describe select ongoing research efforts with a review of current animal data.
Collapse
Affiliation(s)
- Thomas H. Edwards
- US Army Institute of Surgical Research, San Antonio, TX, United States
| | - Guillaume L. Hoareau
- Emergency Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Gu X, Bolden-Rush C, Cuddington CT, Belcher DA, Savla C, Pires IS, Palmer AF. Comprehensive characterization of tense and relaxed quaternary state glutaraldehyde polymerized bovine hemoglobin as a function of cross-link density. Biotechnol Bioeng 2020; 117:2362-2376. [PMID: 32472694 DOI: 10.1002/bit.27382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/08/2022]
Abstract
Previously, our lab developed high molecular weight (MW) tense (T) quaternary state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this study, we prepared PolybHb in the T and relaxed (R) quaternary state with ultrahigh MW (>500 kDa) with varying cross-link densities, and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity (Hill) coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, auto-oxidation, and haptoglobin [Hp]-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e., cross-linker:bovine hemoglobin (bHb) molar ratio, gas-liquid exchange time, temperature during sodium dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T- and R-state PolybHbs. Our results showed that, the duration of the fast-step auto-oxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHbs exhibited significantly higher bimolecular rate constants for binding to Hp and unimolecular O2 offloading rate constants compared to R-state PolybHbs. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHbs. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Crystal Bolden-Rush
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
17
|
Williams AT, Muller CR, Eaker AM, Belcher DA, Bolden-Rush C, Palmer AF, Cabrales P. Polymerized Hemoglobin With Increased Molecular Size Reduces Toxicity in Healthy Guinea Pigs. ACS APPLIED BIO MATERIALS 2020; 3:2976-2985. [DOI: 10.1021/acsabm.0c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander T. Williams
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Cynthia R. Muller
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Allyn M. Eaker
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Donald A. Belcher
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Crystal Bolden-Rush
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F. Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|