1
|
Yang J, Li Z, Liu X, Ren X, Wu J, Xu X, Bao X, Jiang L, Fang J. Characteristics and toxicity of burning smoke released from non-metallic materials of ships in a closed environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136109. [PMID: 39405670 DOI: 10.1016/j.jhazmat.2024.136109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/07/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Affiliation(s)
- Jing Yang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhi Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Liu
- Naval Medical Centre, 880 Xiangyin Road, Shanghai, China
| | - Xiaomeng Ren
- Naval Medical Centre, 880 Xiangyin Road, Shanghai, China
| | - Jun Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Xinhong Xu
- Naval Medical Centre, 880 Xiangyin Road, Shanghai, China
| | - Xiaochen Bao
- Naval Medical Centre, 880 Xiangyin Road, Shanghai, China.
| | - Lu Jiang
- Naval Medical Centre, 880 Xiangyin Road, Shanghai, China
| | - Jingjing Fang
- Naval Medical Centre, 880 Xiangyin Road, Shanghai, China.
| |
Collapse
|
2
|
Yin Y, Zeng Z, Wei S, Shen Z, Cong Z, Zhu X. Using the sympathetic system, beta blockers and alpha-2 agonists, to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 139:112670. [PMID: 39018694 DOI: 10.1016/j.intimp.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) manifests as an acute inflammatory lung injury characterized by persistent hypoxemia, featuring a swift onset, high mortality, and predominantly supportive care as the current therapeutic approach, while effective treatments remain an area of active investigation. Adrenergic receptors (AR) play a pivotal role as stress hormone receptors, extensively participating in various inflammatory processes by initiating downstream signaling pathways. Advancements in molecular biology and pharmacology continually unveil the physiological significance of distinct AR subtypes. Interventions targeting these subtypes have the potential to induce specific alterations in cellular and organismal functions, presenting a promising avenue as a therapeutic target for managing ARDS. This article elucidates the pathogenesis of ARDS and the basic structure and function of AR. It also explores the relationship between AR and ARDS from the perspective of different AR subtypes, aiming to provide new insights for the improvement of ARDS.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Senhao Wei
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhukai Cong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China.
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Niimi Y, Baljinnyam T, Fukuda S, Andersen CR, Salsbury JR, Lee JO, Prough DS, Enkhbaatar P. Effects of nebulized adipose-derived mesenchymal stem cells on acute lung injury following smoke inhalation in sheep. Int Immunopharmacol 2023; 123:110638. [PMID: 37494838 DOI: 10.1016/j.intimp.2023.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Treatment of ARDS caused by smoke inhalation is challenging with no specific therapies available. The aim of this study was to test the efficacy of nebulized adipose-derived mesenchymal stem cells (ASCs) in a well-characterized, clinically relevant ovine model of smoke inhalation injury. MATERIAL AND METHODS Fourteen female Merino sheep were surgically instrumented 5-7 days prior to study. After induction of acute lung injury (ALI) by cooled cotton smoke insufflation into the lungs (under anesthesia and analgesia), sheep were placed on a mechanical ventilator for 48 hrs and monitored for cardiopulmonary hemodynamics in a conscious state. ASCs were isolated from ovine adipose tissue. Sheep were randomly allocated to two groups after smoke injury: 1) ASCs group (n = 6): 10 million ASCs were nebulized into the airway at 1 hr post-injury; and 2) Control group (n = 8): Nebulized with saline into the airways at 1 hr post-injury. ASCs were labeled with green fluorescent protein (GFP) to trace cells within the lung. ASCs viability was determined in bronchoalveolar lavage fluid (BALF). RESULTS PaO2/FiO2 in the ASCs group was significantly higher than in the control group (p = 0.001) at 24 hrs. Oxygenation index: (mean airway pressure × FiO2/PaO2) was significantly lower in the ASCs group at 36 hr (p = 0.003). Pulmonary shunt fraction tended to be lower in the ASCs group as compared to the control group. GFP-labelled ASCs were found on the surface of trachea epithelium 48 hrs after injury. The viability of ASCs in BALF was significantly lower than those exposed to the control vehicle solution. CONCLUSION Nebulized ASCs moderately improved pulmonary function and delayed the onset of ARDS.
Collapse
Affiliation(s)
- Yosuke Niimi
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - Tuvshintugs Baljinnyam
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - Satoshi Fukuda
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - Clark R Andersen
- Department of Biostatistics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - John R Salsbury
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - Jong O Lee
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1102, USA.
| |
Collapse
|
4
|
Cong Z, Yang C, Zeng Z, Wu C, Zhao F, Shen Z, Xiao H, Zhu X. α 1-adrenoceptor stimulation ameliorates lipopolysaccharide-induced lung injury by inhibiting alveolar macrophage inflammatory responses through NF-κB and ERK1/2 pathway in ARDS. Front Immunol 2023; 13:1090773. [PMID: 36685596 PMCID: PMC9853445 DOI: 10.3389/fimmu.2022.1090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Catecholamines such as norepinephrine or epinephrine have been reported to participate in the development of acute respiratory distress syndrome (ARDS) by activating adrenergic receptors (ARs). But the role of α1-AR in this process has yet to be elucidated. Methods In this study, ARDS mouse model was induced by intratracheal instillation of lipopolysaccharide. After treatment with α1-AR agonist phenylephrine or antagonist prazosin, lung pathological injury, alveolar barrier disruption and inflammation, and haemodynamic changes were evaluated. Cytokine levels and cell viability of alveolar macrophages were measured in vitro. Nuclear factor κB (NF-κB), mitogen-activated protein kinase, and Akt signalling pathways were analysed by western blot. Results It showed that α1-AR activation alleviated lung injuries, including reduced histopathological damage, cytokine expression, and inflammatory cell infiltration, and improved alveolar capillary barrier integrity of ARDS mice without influencing cardiovascular haemodynamics. In vitro experiments suggested that α1-AR stimulation inhibited secretion of TNF-α, IL-6, CXCL2/MIP-2, and promoted IL-10 secretion, but did not affect cell viability. Moreover, α1-AR stimulation inhibited NF-κB and enhanced ERK1/2 activation without significantly influencing p38, JNK, or Akt activation. Discussion Our studies reveal that α1-AR stimulation could ameliorate lipopolysaccharide-induced lung injury by inhibiting NF-κB and promoting ERK1/2 to suppress excessive inflammatory responses of alveolar macrophages.
Collapse
Affiliation(s)
- Zhukai Cong
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China,Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Cui Yang
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Changyi Wu
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Feng Zhao
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China,Key Laboratory of Cardiovascular Receptors Research, Beijing, China,*Correspondence: Xi Zhu, ; Han Xiao,
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China,*Correspondence: Xi Zhu, ; Han Xiao,
| |
Collapse
|
5
|
Burmeister DM, Supp DM, Clark RA, Tredget EE, Powell HM, Enkhbaatar P, Bohannon JK, Cancio LC, Hill DM, Nygaard RM. Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 2021 Research Special Interest Group. J Burn Care Res 2022; 43:1032-1041. [PMID: 35778269 DOI: 10.1093/jbcr/irac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Multiple animal species and approaches have been used for modeling different aspects of burn care, with some strategies considered more appropriate or translatable than others. On April 15, 2021, the Research Special Interest Group of the American Burn Association held a virtual session as part of the agenda for the annual meeting. The session was set up as a pro/con debate on the use of small versus large animals for application to four important aspects of burn pathophysiology: burn healing/conversion; scarring; inhalation injury; and sepsis. For each of these topics, 2 experienced investigators (one each for small and large animal models) described the advantages and disadvantages of using these preclinical models. The use of swine as a large animal model was a common theme due to anatomic similarities with human skin. The exception to this was a well-defined ovine model of inhalation injury; both of these species have larger airways which allow for incorporation of clinical tools such as bronchoscopes. However, these models are expensive and demanding from labor and resource standpoints. Various strategies have been implemented to make the more inexpensive rodent models appropriate for answering specific questions of interest in burns. Moreover, modelling burn-sepsis in large animals has proven difficult. It was agreed that the use of both small and large animal models have merit for answering basic questions about the responses to burn injury. Expert opinion and the ensuing lively conversations are summarized herein, which we hope will help inform experimental design of future research.
Collapse
Affiliation(s)
- David M Burmeister
- Uniformed Services University of the Health Sciences, Department of Medicine, Bethesda, MD, United States of America
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Richard A Clark
- Stony Brook University, Departments of Dermatology, Biomedical Engineering and Medicine, Stony Brook, NY, USA
| | - Edward E Tredget
- Firefighters' Burn Treatment Unit, Department of Surgery, 2D3.31 Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, USA
| | - Julia K Bohannon
- Vanderbilt University Medical Center, Department of Anesthesiology, Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - David M Hill
- Firefighters' Burn Center, Regional One Health, 877 Jefferson Avenue, Memphis, TN, USA
| | - Rachel M Nygaard
- Department of Surgery, Hennepin Healthcare, Minneapolis, MN, USA
| |
Collapse
|
6
|
Weinberg AL, Graham DJ, Meyerov DJ, Moshinsky DJA, Aitken DSAA, Spanger DM, Knight DS. Tracheal stent buckling and in-stent stenosis: a case report and proposed airway management algorithm for airway obstruction for patients with tracheal stents. J Cardiothorac Vasc Anesth 2022; 36:3139-3146. [DOI: 10.1053/j.jvca.2022.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
|
7
|
Guo H, Yang R, He J, Chen K, Yang W, Liu J, Xiao K, Li H. Edaravone combined with dexamethasone exhibits synergic effects on attenuating smoke-induced inhalation lung injury in rats. Biomed Pharmacother 2021; 141:111894. [PMID: 34225014 DOI: 10.1016/j.biopha.2021.111894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Inhalational lung injury often leads to morbidity and mortality during fire disasters. In this study, we aimed to evaluate the protective effects of edaravone combined with dexamethasone on smoke-induced inhalational lung injury. Sprague-Dawley rats were divided into five groups, namely, the control, model (inhalation), and three treatment groups (edaravone, dexamethasone, and edaravone combined with dexamethasone). After drug intervention in the acute lung injury model, arterial blood gas, wet:dry weight ratio of the lung tissue, bronchoalveolar lavage fluid, and pulmonary histopathology were determined. The production of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), inflammatory cytokines, peroxidase and apoptosis were further analyzed to explore the underlying mechanisms. The results of blood gas and inflammatory cytokine analysis and the histopathological data demonstrated that edaravone combined with dexamethasone had obvious protective effects on smoke infiltration and tissue injury. Moreover, after the co-administration of edaravone and dexamethasone, malondialdehyde and myeloperoxidase levels in the lung tissue decreased, whereas those of glutathione peroxidase and superoxide dismutase were elevated. In addition, this drug combination could inhibit smoke-induced apoptosis in lung tissues by reducing the cleavage of caspase-3, caspase-9, and poly ADP-ribose polymerase (PARP), and also reverse smoke-mediated mitochondrial dysfunction, including ROS generation, loss of MMP, early release of cytochrome C, second mitochondrial activator of caspases, and apoptosis-inducing factor. In conclusion, edaravone combined with dexamethasone had a protective effect on smoke-induced inhalational lung injury in rats and can be further explored as an attractive therapeutic option for the treatment of smoke inhalation-induced pulmonary dysfunction.
Collapse
Affiliation(s)
- Haidong Guo
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China; Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610036, PR China
| | - Runfang Yang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China
| | - Jin He
- Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610036, PR China
| | - Ke Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China
| | - Wen Yang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China
| | - Junjun Liu
- Sichuan Fire Research Institute of Ministry of Emergency Management, Chengdu 610036, PR China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China; Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|