1
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Yu X, Yuan J, Shi L, Dai S, Yue L, Yan M. Necroptosis in bacterial infections. Front Immunol 2024; 15:1394857. [PMID: 38933265 PMCID: PMC11199740 DOI: 10.3389/fimmu.2024.1394857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
Collapse
Affiliation(s)
- Xing Yu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jin Yuan
- Clinical Laboratory, Puer Hospital of Traditional Chinese Medicine, Puer, China
| | - Linxi Shi
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Shuying Dai
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|
5
|
Hao M, Han X, Yao Z, Zhang H, Zhao M, Peng M, Wang K, Shan Q, Sang X, Wu X, Wang L, Lv Q, Yang Q, Bao Y, Kuang H, Zhang H, Cao G. The pathogenesis of organ fibrosis: Focus on necroptosis. Br J Pharmacol 2023; 180:2862-2879. [PMID: 36111431 DOI: 10.1111/bph.15952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouhui Yao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Han Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Liu Z, Liu P, Cui T, Chen X, Wang B, Gao C, Wang Z, Li C, Yang N. Genome-wide identification and functional characterization of inhibitor of nuclear factor-κB (IκB) kinase (IKK) in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108619. [PMID: 36803778 DOI: 10.1016/j.fsi.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The inhibitor of nuclear factor-κB (IκB) kinase (IKK) is involved in a variety of intracellular cell signaling pathways and is an important component of the NF-κB signaling pathway. IKK genes have been suggested to play important roles in the innate immune response to pathogen infection in both vertebrates and invertebrates. However, little information is available about IKK genes in turbot (Scophthalmus maximus). In this study, six IKK genes were identified including SmIKKα, SmIKKα2, SmIKKβ, SmIKKε, SmIKKγ, and SmTBK1. The IKK genes of turbot showed the highest identity and similarity with Cynoglossus semilaevis. Then, phylogenetic analysis showed that the IKK genes of turbot were most closely related to C. semilaevis. In addition, IKK genes were widely expressed in all the examined tissues. Meanwhile, the expression patterns of IKK genes were investigated by QRT-PCR after Vibrio anguillarum and Aeromonas salmonicida infection. The results showed that IKK genes had varying expression patterns in mucosal tissues after bacteria infection, indicating that they may play key roles in maintaining the integrity of the mucosal barrier. Subsequently, protein and protein interaction (PPI) network analysis showed that most proteins interacting with IKK genes were located in the NF-κB signaling pathway. Finally, the double luciferase report and overexpression experiments showed that SmIKKα/SmIKKα2/SmIKKβ involved in the activation of NF-κB in turbot. In summary, our results suggested that IKK genes of turbot played important roles in the innate immune response of teleost, and provide valuable information for further study of the function of IKK genes.
Collapse
Affiliation(s)
- Zhe Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Liu
- Yantai Marine Economic Research Institute, China
| | - Tong Cui
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuan Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongyi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Chen S, Kong J, Wu S, Luo C, Shen J, Zhang Z, Zou J, Feng L. Targeting TBK1 attenuates ocular inflammation in uveitis by antagonizing NF-κB signaling. Clin Immunol 2023; 246:109210. [PMID: 36528252 DOI: 10.1016/j.clim.2022.109210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Uveitis with complex pathogenesis is a kind of eye emergency involving refractory and blinding inflammation. Dysregulation of TANK binding kinase 1 (TBK1), which plays an important role in innate immunity, often leads to inflammatory diseases in various organs. However, the role of TBK1 in uveitis remains elusive. In this study, we identified that the mRNA expression level of TBK1 and its phosphorylation level were significantly increased in peripheral blood mononuclear cells (PBMCs) of patients with uveitis. Consistent with this, the expression of Tbk1 was elevated in the ocular tissues of uveitis rats and primary peritoneal macrophages while its phosphorylation levels, which present activation forms, were upregulated as well, accompanied by an increase in the level of nuclear factor-κB (NF-κB) and proinflammatory cytokines. In addition, inhibition of TBK1 may effectively reduce the inflammatory response of uveitis rats by blocking NF-κB entry into the nucleus and impeding the initiation of NLRP3 inflammasome- and caspase-1-mediated pyroptosis pathways.
Collapse
Affiliation(s)
- Si Chen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Department of ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201599, China
| | - Jinfeng Kong
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chenqi Luo
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310009, China.
| | - Jian Zou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Lei Feng
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
8
|
What's New in Shock, March 2021? Shock 2021; 55:285-287. [PMID: 33560781 DOI: 10.1097/shk.0000000000001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|