1
|
Shen J, Tang L, Wang Z, Ma Q, Lin F, Liu H. Clinical Value and Potential Molecular Mechanism of miR-373-3p in Coronary Atherosclerosis. Clin Appl Thromb Hemost 2025; 31:10760296251319953. [PMID: 40116722 PMCID: PMC11930461 DOI: 10.1177/10760296251319953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 03/23/2025] Open
Abstract
BackgroundCoronary atherosclerosis (CAS) is a chronic inflammatory condition marked by damage to the coronary artery endothelium, lipid accumulation, and fibrosis. It stands as the principal etiology of coronary heart disease (CHD).AimsThe rationale of this study was to investigate the clinical value and potential mechanism of miR-373-3p in carotid CAS.MethodsA total of 95 patients with CAS and 35 controls were enrolled in the study. RT-qPCR was used to evaluate the relative expression of miR-373-3p. ROC curve was used to analyze the diagnostic value of miR-373-3p in CAS. Logistic regression analysis was utilized to evaluate whether miR-373-3p serves as a risk factor for CAS. In addition, miR-373-3p overexpression and knockdown models of endothelial progenitor (EPCs) were established to investigate the mechanism of miR-373-3p in the regulation of EPCs.ResultsThe level of miR-373-3p in CAS patients was significantly increased. MiR-373-3p can well distinguish patients with CAS and is a risk factor for CAS. The over-expression of miR-373-3p can substantially inhibit the proliferation, migration and invasion of EPCs, and stimulate the apoptosis of EPCs. MiR-373-3p is involved in the progression of CAS by targeting VEGFA.ConclusionsAs a highly sensitive potential biomarker, miR-373-3p can predict the occurrence and progression of CAS. Additionally, miR-373-3p is involved in the progression of CAS by targeting VEGFA, which may play an essential role in the pathogenesis of CAS.
Collapse
Affiliation(s)
- JiaYang Shen
- School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Lihong Tang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Zhe Wang
- Department of Cardiology, The Sixth People's Hospital of Zibo, Shandong, China
| | - Qiaoli Ma
- Department of Cardiology, Zibo Central Hospital, Shandong, China
| | - Fei Lin
- Department of Cardiology, The Sixth People's Hospital of Zibo, Shandong, China
| | - Hong Liu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
He S, Hou T, Zhou J, Yu B, Cai J, Luo F, Xu J, Xing J. Implication of CXCR2-Src axis in the angiogenic and osteogenic effects of FP-TEB. NPJ Regen Med 2024; 9:24. [PMID: 39304660 DOI: 10.1038/s41536-024-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Application of tissue-engineered bones (TEBs) is hindered by challenges associated with incorporated viable cells. Previously, we employed freeze-drying techniques on TEBs to devitalize mesenchymal stem cells (MSCs) while preserving functional proteins, yielding functional proteins-based TEBs (FP-TEBs). Here, we aimed to elucidate their in vivo angiogenic and osteogenic capabilities and the mechanisms. qPCR arrays were employed to evaluate chemokines and receptors governing EC migration. Identified C-X-C chemokine receptors (CXCRs) were substantiated using shRNAs, and the pivotal role of CXCR2 was validated via conditional knockout mice. Finally, signaling molecules downstream of CXCR2 were identified. Additionally, Src, MAP4K4, and p38 MAPK were identified indispensable for CXCR2 function. Further investigations revealed that regulation of p38 MAPK by Src was mediated by MAP4K4. In conclusion, FP-TEBs promoted EC migration, angiogenesis, and osteogenesis via the CXCR2-Src-Map4k4-p38 MAPK axis.
Collapse
Affiliation(s)
- Sihao He
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jiangling Zhou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Bo Yu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Juan Cai
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China.
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China.
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| | - Junchao Xing
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China.
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China.
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| |
Collapse
|
3
|
Zhao Z, Sun X, Tu P, Ma Y, Guo Y, Zhang Y, Liu M, Wang L, Chen X, Si L, Li G, Pan Y. Mechanisms of vascular invasion after cartilage injury and potential engineering cartilage treatment strategies. FASEB J 2024; 38:e23559. [PMID: 38502020 DOI: 10.1096/fj.202302391rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Articular cartilage injury is one of the most common diseases in orthopedic clinics. Following an articular cartilage injury, an inability to resist vascular invasion can result in cartilage calcification by newly formed blood vessels. This process ultimately leads to the loss of joint function, significantly impacting the patient's quality of life. As a result, developing anti-angiogenic methods to repair damaged cartilage has become a popular research topic. Despite this, tissue engineering, as an anti-angiogenic strategy in cartilage injury repair, has not yet been adequately investigated. This exhaustive literature review mainly focused on the process and mechanism of vascular invasion in articular cartilage injury repair and summarized the major regulatory factors and signaling pathways affecting angiogenesis in the process of cartilage injury. We aimed to discuss several potential methods for engineering cartilage repair with anti-angiogenic strategies. Three anti-angiogenic tissue engineering methods were identified, including administering angiogenesis inhibitors, applying scaffolds to manage angiogenesis, and utilizing in vitro bioreactors to enhance the therapeutic properties of cultured chondrocytes. The advantages and disadvantages of each strategy were also analyzed. By exploring these anti-angiogenic tissue engineering methods, we hope to provide guidance for researchers in related fields for future research and development in cartilage repair.
Collapse
Affiliation(s)
- Zitong Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoxian Sun
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Pengcheng Tu
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yang Guo
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lining Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xinyu Chen
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lin Si
- Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Guangguang Li
- Orthopedics and traumatology department, Yixing Traditional Chinese Medicine Hospital, Yixing, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
4
|
Li Q, Dong M, Han Q, Zhang Y, Yang D, Wei D, Yang Y. Enhancing diabetic wound healing with a pH-responsive nanozyme hydrogel featuring multi-enzyme-like activities and oxygen self-supply. J Control Release 2024; 365:905-918. [PMID: 38092256 DOI: 10.1016/j.jconrel.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Diabetic wound treating remains a challenging due to bacterial infections, oxidative stress, tissue hypoxia, and high glucose levels. Herein, a multi-enzyme-like activities nanocomposite (Mo,Fe/Cu,I-Ag@GOx) was designed and anchored to a multifunctional fluorescence hydrogel. The nanozyme gel, loaded with glucose-oxidase (GOx), exhibits intrinsic GOx, peroxidase (POD)-, oxidase (OXD)-, catalase (CAT)- and superoxide dismutase (SOD)-like activities with pH-switchable glucose-initiated cascade reaction for diabetic wound healing. In the first cascade-reaction, initiated by GOx, the nanozyme gel catalyzes glucose and O2 into gluconic acid and H2O2 to further generate superoxide anion radical (O2·-) and hydroxyl radicals (·OH) to eradicate bacteria. In the second cascade-reaction, as the wound pH changes alkalescent microenvironment, the nanozyme gel simulates SOD to transform O2·- into O2 and H2O2, and then decomposes endogenous and exogenous H2O2 into O2 via CAT-like activity to reduce oxidative stress and alleviate hypoxia. The gel by calcium ion (Ca2+) cross-linked sodium alginate (SA) and chitosan (CS) containing nanozyme was constructed with injectability, adhesion and fluorescence properties, as well as beneficial biocompatible. Importantly, the water/alcohol solubility of the nanozyme gel allows it to be used as a dressing without causing secondary injury to the wound. The multifunctional fluorescence hydrogel exhibits efficiently promote pro-angiogenesis and bacteria-infected wound healing.
Collapse
Affiliation(s)
- Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Miaodan Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yijing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Daqiao Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
5
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Yu H, Li Y, Pan Y, Wang H, Wang W, Ren X, Yuan H, Lv Z, Zuo Y, Liu Z, Lin W, Yao Q. Multifunctional porous poly (L-lactic acid) nanofiber membranes with enhanced anti-inflammation, angiogenesis and antibacterial properties for diabetic wound healing. J Nanobiotechnology 2023; 21:110. [PMID: 36973737 PMCID: PMC10041712 DOI: 10.1186/s12951-023-01847-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
With increased diabetes incidence, diabetic wound healing is one of the most common diabetes complications and is characterized by easy infection, chronic inflammation, and reduced vascularization. To address these issues, biomaterials with multifunctional antibacterial, immunomodulatory, and angiogenic properties must be developed to improve overall diabetic wound healing for patients. In our study, we prepared porous poly (L-lactic acid) (PLA) nanofiber membranes using electrospinning and solvent evaporation methods. Then, sulfated chitosan (SCS) combined with polydopamine-gentamicin (PDA-GS) was stepwise modified onto porous PLA nanofiber membrane surfaces. Controlled GS release was facilitated via dopamine self-polymerization to prevent early stage infection. PDA was also applied to PLA nanofiber membranes to suppress inflammation. In vitro cell tests results showed that PLA/SCS/PDA-GS nanofiber membranes immuomodulated macrophage toward the M2 phenotype and increased endogenous vascular endothelial growth factor secretion to induce vascularization. Moreover, SCS-contained PLA nanofiber membranes also showed good potential in enhancing macrophage trans-differentiation to fibroblasts, thereby improving wound healing processes. Furthermore, our in vitro antibacterial studies against Staphylococcus aureus indicated the effective antibacterial properties of the PLA/SCS/PDA-GS nanofiber membranes. In summary, our novel porous PLA/SCS/PDA-GS nanofiber membranes possessing enhanced antibacterial, anti-inflammatory, and angiogenic properties demonstrate promising potential in diabetic wound healing processes.
Collapse
Affiliation(s)
- Hao Yu
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yijia Li
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yining Pan
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Hongning Wang
- grid.268099.c0000 0001 0348 3990Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027 China
| | - Wei Wang
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Xiaobin Ren
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Hang Yuan
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Ziru Lv
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Yijia Zuo
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Zhirong Liu
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Wei Lin
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| | - Qingqing Yao
- grid.414701.7National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, 325027 People’s Republic of China
| |
Collapse
|
7
|
Hirano T, Iwasaki Y, Ishida T, Tameta T, Kobayashi H, Shinohara K. Transcatheter arterial embolization using imipenem/cilastatin sodium and microspheres for traumatic pseudoaneurysm: A case report. Trauma Case Rep 2022; 42:100713. [PMID: 36247878 PMCID: PMC9554811 DOI: 10.1016/j.tcr.2022.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/29/2022] Open
Abstract
For transcatheter arterial embolization (TAE) of pseudoaneurysms, when the culprit artery is too small or tortuous to be selected with a microcatheter, n-butyl-2-cyanoacrylate (NBCA) may be used as embolic material. Nevertheless, NBCA can cause inadvertent embolization and ischemic complications because liquid adhesives cannot be controlled precisely. In such cases, imipenem/cilastatin sodium (IPM/CS) could be used as an alternative to NBCA for TAE. However, TAE using IPM/CS for traumatic pseudoaneurysms has not been reported previously. Therefore, the possibility of using IPM/CS to embolize refractory traumatic pseudoaneurysms with small culprit arteries remains unknown. A previously healthy 51-year-old man sustained multiple traumatic injuries, including an open pelvic fracture. An emergency TAE for the pelvic fracture, massive blood transfusion, and emergency colostomy and cystostomy were performed on admission day, following which the patient was hemodynamically stable. However, he had repeated episodes of hematochezia due to pelvic pseudoaneurysm on days 18, 53, 60, and 70 after admission despite several TAE attempts using gelatin sponge, coils, and NBCA. During recurrence on day 70, we performed TAE using IPM/CS and microspheres, following which the pseudoaneurysm resolved without rebleeding or obvious ischemic complications. IPM/CS and microspheres could embolize, without rebleeding, the refractory pseudoaneurysm in small and tortuous culprit arteries that could not be embolized with NBCA. For embolization of traumatic pseudoaneurysms with severe tissue damage and small culprit arteries, NBCA might not be able to reach the bleeding point. In such cases, TAE using IPM/CS and microspheres could be a safe and effective procedure.
Collapse
Affiliation(s)
- Takaki Hirano
- Department of Anesthesiology and Emergency Medicine, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, Japan,Corresponding author at: Department of Anesthesiology and Emergency Medicine, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima 963-8558, Japan.
| | - Yudai Iwasaki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Tokiya Ishida
- Department of Anesthesiology and Emergency Medicine, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, Japan
| | - Tadanobu Tameta
- Department of Radiology, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, Japan
| | - Hiroko Kobayashi
- Department of Radiology, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, Japan
| | - Kazuaki Shinohara
- Department of Anesthesiology and Emergency Medicine, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, Japan
| |
Collapse
|
8
|
Yu X, Fu X, Yang J, Chen L, Leng F, Yang Z, Yu C. Glucose/ROS cascade-responsive ceria nanozymes for diabetic wound healing. Mater Today Bio 2022; 15:100308. [PMID: 35711291 PMCID: PMC9194460 DOI: 10.1016/j.mtbio.2022.100308] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic wounds have an extremely complex microenvironment of hyperglycemia, hypoxia and high reactive oxygen species (ROS). Therefore, the regulation and management of this microenvironment may provide a new and improved treatment method for chronic diabetic wound healing. Herein, a glucose/ROS cascade-responsive nanozyme (CHA@GOx) was developed for diabetic wound treatment based on Ce-driven coassembly by a special dual ligand (alendronic acid and 2-methylimidazole) and glucose oxidase (GOx). It possesses superoxide dismutase and catalase mimic activities, which effectively remove excess ROS. In particular, it can catalyze excessive hydrogen peroxide generated by the glucose oxidation reaction to produce oxygen, regulate the oxygen balance of the wound, and reduce the toxic side effects of GOx, thus achieving the purpose of synergistically repairing diabetic wounds. In vitro experiments show that CHA@GOx assists mouse fibroblast migration and promotes human umbilical vein endothelial cell tube formation. In vivo, it can induce angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. Taken together, this study indicates that the coassembly of multifunctional nanozymes has implications in diabetic wound healing.
Collapse
Affiliation(s)
| | | | - Jiaxin Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lu Chen
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Feng Leng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
9
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
10
|
What's New in Shock, March 2021? Shock 2021; 55:285-287. [PMID: 33560781 DOI: 10.1097/shk.0000000000001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|