1
|
Akaranuchat N, Chruewkamlow N, Sathan-ard C, Phutthakunphithak P, Tapechum S, Ruangsetakit C, Sermsathanasawadi N. Efficacy of Quality and Quantity media-cultured mononuclear cells for promoting peripheral nerve regeneration in mouse model. PLoS One 2025; 20:e0321457. [PMID: 40238913 PMCID: PMC12002519 DOI: 10.1371/journal.pone.0321457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/05/2025] [Indexed: 04/18/2025] Open
Abstract
This study aimed to assess the efficacy of Quality and Quantity media-cultured mononuclear cells (QQ-MNCs) for promoting nerve regeneration in a mouse sciatic nerve transection model. Human peripheral blood mononuclear cells (PB-MNCs) and QQ-MNCs derived from healthy volunteers were used/compared. The left sciatic nerve was surgically transected in 27 mice. After complete nerve transection was confirmed, end-to-end direct epineurial nerve repair was performed using 9-0 nylon. Fibrin glue was applied to the tissue around the injury site to limit diffusion of the study treatment followed by application of 0.5 ml phosphate buffered saline (PBS) or PB-MNCs (2x106 cells) or QQ-MNCs (2x106 cells) to the injury site. The skin was then closed using 6-0 nylon. Histomorphology, immunohistochemistry, electrophysiologic examination, and functional assessment were evaluated at 12-weeks followed by euthanasia and subsequent harvesting of the left sciatic nerves and the left and right gastrocnemius muscles for examination. QQ-MNCs mice exhibited significant improvement in all histomorphologic parameters (axon fiber diameter, myelin thickness, percentage of nerve density) and immunohistochemistry assays (S100, SOX10, GFAP, neurofilament, IL-1β, VEGF, anti-HNA, TNF-α, vWF) compared to PBS mice (all p < 0.05). QQ-MNCs mice also had a significantly higher Basso Mouse Scale score compared to PBS mice (p = 0.018). The percentage of nerve density adjacent to the injury site was significantly higher in QQ-MNCs mice than in PB-MNCs mice (p = 0.049). IL-1β expression was significantly lower in QQ-MNCs mice than in PB-MNCs mice (p = 0.01). QQ-MNCs mice demonstrated significantly better functional and histomorphologic outcomes of nerve regeneration compared to PB-MNCs mice and PBS mice.
Collapse
Affiliation(s)
- Nutthawut Akaranuchat
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttapol Chruewkamlow
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutipon Sathan-ard
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phakawan Phutthakunphithak
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanean Ruangsetakit
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttawut Sermsathanasawadi
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Moradi F, Mokhtari T. Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review. J Biochem Mol Toxicol 2025; 39:e70071. [PMID: 39853846 PMCID: PMC11798427 DOI: 10.1002/jbt.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 01/26/2025]
Abstract
The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions. This aberrant microglial response also results in localized neuroinflammation in brain areas crucial for cognitive function. Additionally, CP as a persistent physiological and psychological stressor may be associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction, systemic inflammation, disruption of the blood-brain barrier (BBB), and neuroinflammation. These pathophysiological changes can cause morphological and functional impairments in brain regions responsible for cognition, memory, and neurotransmitter production, potentially contributing to the development and progression of CP-associated AD. Resultant neuroinflammation can further promote amyloid-beta (Aβ) plaque deposition, a hallmark of AD pathology. Potential therapeutic interventions targeting these neuroinflammatory pathways, particularly through the regulation of microglial NLRP3 activation, hold promise for improving outcomes in individuals with comorbid CP and AD. However, further research is required to fully elucidate the complex interplay between these conditions and develop effective treatment strategies.
Collapse
Affiliation(s)
- Fatemeh Moradi
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, Stratford, NJ 08084, USA
| | - Tahmineh Mokhtari
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People’s Republic of China
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, USA
| |
Collapse
|
3
|
Hunter TJ, Videlefsky ZM, Ferreira Nakatani L, Zadina JE. Comparison of Morphine and Endomorphin Analog ZH853 for Tolerance and Immunomodulation in a Rat Model of Neuropathic Pain. THE JOURNAL OF PAIN 2024; 25:104607. [PMID: 38885918 DOI: 10.1016/j.jpain.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
µ-Opioid receptor agonists, the gold standard for analgesia, come with significant side effects when used chronically. Tolerance, defined as the decrease in analgesic activity after repeated use, remains a vital therapeutic obstacle as it increases the likelihood of dose escalation and potentially lethal side effects like respiratory depression. Previous experiments have shown that the endomorphin-1 analog, ZH853, is a specific µ-opioid receptor agonist with reduced side effects like tolerance and glial activation following chronic central administration in pain-naive animals. Here, we investigated the effects of chronic, peripheral administration of µ-opioid receptor agonists following neuropathic injury. Though µ-opioids are effective at reducing neuropathic pain, they are not recommended for first-line treatment due to negative side effects. Compared with chronic morphine, chronic ZH853 treatment led to decreased tolerance and reduced glial activation. Following twice-daily intravenous injections, morphine was less potent and had a shorter duration of antinociception compared with ZH853. Chronic morphine, but not chronic ZH853, elevated markers of activation/inflammation of astrocytes (glial fibrillary acidic protein), microglia (ionized calcium-binding adapter molecule 1), the proinflammatory cytokine tumor necrosis factor-α, and phosphorylated mitogen-activated protein (MAP) kinase p38 (pp38). By contrast, chronic ZH853 reduced ionized calcium-binding adapter molecule 1 and tumor necrosis factor-α relative to both morphine and vehicle, suggesting anti-inflammatory properties with respect to these markers. Glial fibrillary acidic protein and pp38 were not significantly different from vehicle but were significantly lower than morphine. This study demonstrates the effectiveness of chronic ZH853 for providing analgesia in a neuropathic pain state with reduced tolerance compared with morphine, potentially due to reductions in spinal glial activation. PERSPECTIVE: Neuropathic pain is generally undertreated and resistant to medication, and side-effects limit opioid treatment. Here, we show that, compared with an equiantinociceptive dose of morphine, chronic intravenous administration of endomorphin analog ZH853 led to prolonged antiallodynia, reduced tolerance, and inhibition of spinal cord neuroinflammation in male spared nerve-injured rats.
Collapse
Affiliation(s)
- Terrence J Hunter
- Neuroscience Program/Brain Institute, Tulane University School of Medicine, New Orleans, Louisiana
| | - Zoe M Videlefsky
- Neuroscience Program/Brain Institute, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - James E Zadina
- Neuroscience Program/Brain Institute, Tulane University School of Medicine, New Orleans, Louisiana; SE LA Veterans Health Care System, Tulane University School of Medicine, New Orleans, Louisiana; Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana; Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
4
|
Han S, Wang J, Zhang W, Tian X. Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms. Mol Neurobiol 2024; 61:8123-8143. [PMID: 38470516 DOI: 10.1007/s12035-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients' quality of life. Despite this comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research directions.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Jia SY, Yin WQ, Xu WM, Li J, Yan W, Lin JY. Liquiritin ameliorates painful diabetic neuropathy in SD rats by inhibiting NLRP3-MMP-9-mediated reversal of aquaporin-4 polarity in the glymphatic system. Front Pharmacol 2024; 15:1436146. [PMID: 39295943 PMCID: PMC11408323 DOI: 10.3389/fphar.2024.1436146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background Despite advancements in diabetes treatment, the management of Painful Diabetic Neuropathy (PDN) remains challenging. Our previous research indicated a significant correlation between the expression and distribution of Aquaporin-4 (AQP4) in the spinal glymphatic system and PDN. However, the potential role and mechanism of liquiritin in PDN treatment remain uncertain. Methods This study established a rat model of PDN using a combination of low-dose Streptozotocin (STZ) and a high-fat, high-sugar diet. Rats were treated with liquiritin and MCC950 (an NLRP3 inhibitor). We monitored fasting blood glucose, body weight, and mechanical allodynia periodically. The glymphatic system's clearance function was evaluated using Magnetic Resonance Imaging (MRI), and changes in proteins including NLRP3, MMP-9, and AQP4 were detected through immunofluorescence and Western blot techniques. Results The rats with painful diabetic neuropathy (PDN) demonstrated several physiological changes, including heightened mechanical allodynia, compromised clearance function within the spinal glymphatic system, altered distribution of AQP4, increased count of activated astrocytes, elevated expression levels of NLRP3 and MMP-9, and decreased expression of AQP4. However, following treatment with liquiritin and MCC950, these rats exhibited notable improvements. Conclusion Liquiritin may promote the restoration of AQP4 polarity by inhibiting NLRP3 and MMP-9, thereby enhancing the clearance functions of the spinal cord glymphatic system in PDN rats, alleviating the progression of PDN.
Collapse
Affiliation(s)
- Shuai-Ying Jia
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wen-Qin Yin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wen-Mei Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei Yan
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Szmyd B, Wiśniewski K, Jaskólski DJ. Pathogenesis and Therapy of Neurovascular Compression Syndromes: An Editorial. Biomedicines 2024; 12:1486. [PMID: 39062059 PMCID: PMC11275226 DOI: 10.3390/biomedicines12071486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Neurovascular compression syndromes (NVC) remains a challenging disorders resulting from the compression of cranial nerves at the transition zone [...].
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland (D.J.J.)
| | | | | |
Collapse
|
7
|
Gu D, Xia Y, Ding Z, Qian J, Gu X, Bai H, Jiang M, Yao D. Inflammation in the Peripheral Nervous System after Injury. Biomedicines 2024; 12:1256. [PMID: 38927464 PMCID: PMC11201765 DOI: 10.3390/biomedicines12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve injury is a common condition that occurs as a result of trauma, iatrogenic injury, or long-lasting stimulation. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) has a strong capacity for self-repair and regeneration. Peripheral nerve injury results in the degeneration of distal axons and myelin sheaths. Macrophages and Schwann cells (SCs) can phagocytose damaged cells. Wallerian degeneration (WD) makes the whole axon structure degenerate, creating a favorable regenerative environment for new axons. After nerve injury, macrophages, neutrophils and other cells are mobilized and recruited to the injury site to phagocytose necrotic cells and myelin debris. Pro-inflammatory and anti-inflammatory factors involved in the inflammatory response provide a favorable microenvironment for peripheral nerve regeneration and regulate the effects of inflammation on the body through relevant signaling pathways. Previously, inflammation was thought to be detrimental to the body, but further research has shown that appropriate inflammation promotes nerve regeneration, axon regeneration, and myelin formation. On the contrary, excessive inflammation can cause nerve tissue damage and pathological changes, and even lead to neurological diseases. Therefore, after nerve injury, various cells in the body interact with cytokines and chemokines to promote peripheral nerve repair and regeneration by inhibiting the negative effects of inflammation and harnessing the positive effects of inflammation in specific ways and at specific times. Understanding the interaction between neuroinflammation and nerve regeneration provides several therapeutic ideas to improve the inflammatory microenvironment and promote nerve regeneration.
Collapse
Affiliation(s)
- Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Yiming Xia
- Medical School, Nantong University, Nantong 226001, China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Xi Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| |
Collapse
|
8
|
Mu G, Li Q, Lu B, Yu X. Amelioration of nerve demyelination by hydrogen-producing silicon-based agent in neuropathic pain rats. Int Immunopharmacol 2023; 117:110033. [PMID: 36933448 DOI: 10.1016/j.intimp.2023.110033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Trigeminal neuralgia (TN) is a complex orofacial neuropathic pain. The crippling condition's underlying mechanism is still not completely understood. The main cause of lightning-like pain in patients with TN may be chronic inflammation that causes nerve demyelination. Nano-silicon (Si) can safely and continuously produce hydrogen in the alkaline environment of the intestine to exert systemic anti-inflammatory effects. Hydrogen has a promising anti-neuroinflammatory impact. The study aimed to determine how intra-intestinal application of a hydrogen-producing Si-based agent affected the demyelination of the trigeminal ganglion in TN rats. We discovered that increased expression of the NLRP3 inflammasome and inflammatory cell infiltration occurred concurrently with demyelination of the trigeminal ganglion in TN rats. We could determine that the neural effect of the hydrogen-producing Si-based agent was connected to the inhibition of microglial pyroptosis by using transmission electron microscopy. The results demonstrated that the Si-based agent reduced the infiltration of inflammatory cells and the degree of neural demyelination. In a subsequent study, it was discovered that hydrogen produced by a Si-based agent regulates the pyroptosis of microglia may through the NLRP3-caspase-1-GSDMD pathway, preventing the development of chronic neuroinflammation and consequently lowering the incidence of nerve demyelination. This study offers a novel strategy for elucidating the pathogenesis of TN and developing potential therapeutic drugs.
Collapse
Affiliation(s)
- Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan Province 643000, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, PR China
| | - Qiang Li
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan Province 643000, PR China
| | - Bin Lu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan Province 643000, PR China.
| | - Xuan Yu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan Province 643000, PR China.
| |
Collapse
|
9
|
Zhang Y, Feng J, Ou C, Zhou X, Liao Y. AQP4 mitigates chronic neuropathic pain-induced cognitive impairment in mice. Behav Brain Res 2023; 440:114282. [PMID: 36596395 DOI: 10.1016/j.bbr.2022.114282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a risk factor for cognitive defects. The ubiquitous expression of AQP4 in astrocytes throughout the central nervous system is altered in the neurodegenerative disease. However, the exact role of AQP4 in cognitive impairment induced by chronic neuropathic pain remains unclear. In this study, we discovered that AQP4 protein and mRNA expression decreased time-dependently in the model of chronic neuropathic pain-induced cognitive disorder. AQP4 overexpression recovered mice from cognitive impairment. Furthermore, the concentration of Aβ1-42 in the serum and hippocampus reduced in mice with AQP4 overexpression adeno-associated virus injection. In conclusion, AQP4 in astrocytes is important in mitigating cognitive impairment caused by chronic neuropathic pain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Yonghong Liao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
10
|
Wang YH, Tang YR, Gao X, Zhang NN, Lv QQ, Liu J, Li Y. Aspirin-triggered Resolvin D1 ameliorates activation of the NLRP3 inflammasome via induction of autophagy in a rat model of neuropathic pain. Front Pharmacol 2023; 14:971136. [PMID: 36937852 PMCID: PMC10014882 DOI: 10.3389/fphar.2023.971136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Several studies performed thus far indicate that neuroinflammation may be one of the mechanisms underlying the pathogenesis of neuropathic pain (NP). Autophagy, as an adaptive response, has been regarded as an active process of removing the inflammatory stimulus and restoring homeostatic balance. Resolution of inflammation is a biochemical process mediated by the so-called aspirin-triggered specialized proresolving lipid mediators (AT-SPMs), which are thought to exert protective effects in NP. Recent studies have proposed mechanisms in models of inflammatory disorders and showed a relationship between resolution of inflammation and autophagy. This study aimed to validate the functional effects of Aspirin-triggered Resolvin D1 (AT-RvD1) on in vitro and in vivo models of inflammation and to determine their roles in the regulation of autophagy and activation of the Nod-like receptor protein 3 (NLRP3) inflammasome signaling pathway. Methods: An NP model was established using L5-6 spinal nerve ligation (SNL) and a model of tumor necrosis factor alpha (TNF-α)-stimulated primary microglia was established to evaluate the effect of SPMs. Western blotting was used to detect the level of NLRP3 inflammasomes complexes proteins (NLRP3, ASC, and Caspase-1) and autophagy-related proteins (LC3B, and Beclin1). Immunofluorescence staining was used to understand the autophagy and NLRP3 inflammasome activation process. The behavioral changes in rats were analyzed using paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL) test. Results: Our results showed that AT-SPMs significantly upregulated the activation of autophagy, which was characterized by an increase in the ratio of LC3B-II/I and accumulation of ATG5 and Beclin1. AT-RvD1 showed a dose-dependent decrease in the upregulated PWT and PWL induced by SNL and suppressed the expression of the NLRP3 inflammasome protein and the production of its corresponding downstream proinflammatory factors. Additionally, AT-RvD1 induced the activation of autophagy of the microglia and decreased the expression of the NLRP3 inflammasome protein and the accumulation of proinflammatory factors in TNF-ɑ-challenged microglia. Conclusion: Thus, these results showed that AT-RvD1 may be a potential alternative therapeutic strategy for the prevention or treatment of NP by inhibition of the NLRP3 inflammasome signaling pathway by targeting the induction of autophagy.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu-Ru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Nan-Nan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing-Qing Lv
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Juan Liu
- Department of Anesthesiology, Shandong Provincial Maternal and Child Healthcare Hospital, Jinan, Shandong, China
- *Correspondence: Juan Liu, ; Yan Li,
| | - Yan Li
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- *Correspondence: Juan Liu, ; Yan Li,
| |
Collapse
|
11
|
Li QY, Duan YW, Zhou YH, Chen SX, Li YY, Zang Y. NLRP3-Mediated Piezo1 Upregulation in ACC Inhibitory Parvalbumin-Expressing Interneurons Is Involved in Pain Processing after Peripheral Nerve Injury. Int J Mol Sci 2022; 23:13035. [PMID: 36361825 PMCID: PMC9655876 DOI: 10.3390/ijms232113035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain information in the peripheral nervous system. However, the pain-processing role of Piezo1 in the brain is unknown. In this work, we found that spared (sciatic) nerve injury (SNI) increased Piezo1 protein levels in inhibitory parvalbumin (PV)-expressing interneurons (PV-INs) but not in glutaminergic CaMKⅡ+ neurons, in the bilateral ACC. A reduction in the number of PV-INs but not in the number of CaMKⅡ+ neurons and a significant reduction in inhibitory synaptic terminals was observed in the SNI chronic pain model. Further, observation of morphological changes in the microglia in the ACC showed their activated amoeba-like transformation, with a reduction in process length and an increase in cell body area. Combined with the encapsulation of Piezo1-positive neurons by Iba1+ microglia, the loss of PV-INs after SNI might result from phagocytosis by the microglia. In cellular experiments, administration of recombinant rat TNF-α (rrTNF) to the BV2 cell culture or ACC neuron primary culture elevated the protein levels of Piezo1 and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3). The administration of the NLRP3 inhibitor MCC950 in these cells blocked the rrTNF-induced expression of caspase-1 and interleukin-1β (key downstream factors of the activated NLRP3 inflammasome) in vitro and reversed the SNI-induced Piezo1 overexpression in the ACC and alleviated SNI-induced allodynia in vivo. These results suggest that NLRP3 may be the key factor in causing Piezo1 upregulation in SNI, promoting an imbalance between ACC excitation and inhibition by inducing the microglial phagocytosis of PV-INs and, thereby, facilitating spinal pain transmission.
Collapse
Affiliation(s)
- Qiao-Yun Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Yi-Wen Duan
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Yao-Hui Zhou
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Shao-Xia Chen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| |
Collapse
|
12
|
Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain. Int Immunopharmacol 2022; 110:109026. [DOI: 10.1016/j.intimp.2022.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
|
13
|
Szmyd B, Sołek J, Błaszczyk M, Jankowski J, Liberski PP, Jaskólski DJ, Wysiadecki G, Karuga FF, Gabryelska A, Sochal M, Tubbs RS, Radek M. The Underlying Pathogenesis of Neurovascular Compression Syndromes: A Systematic Review. Front Mol Neurosci 2022; 15:923089. [PMID: 35860499 PMCID: PMC9289473 DOI: 10.3389/fnmol.2022.923089] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular compression syndromes (NVC) are challenging disorders resulting from the compression of cranial nerves at the root entry/exit zone. Clinically, we can distinguish the following NVC conditions: trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia. Also, rare cases of geniculate neuralgia and superior laryngeal neuralgia are reported. Other syndromes, e.g., disabling positional vertigo, arterial hypertension in the course of NVC at the CN IX-X REZ and torticollis, have insufficient clinical evidence for microvascular decompression. The exact pathomechanism leading to characteristic NVC-related symptoms remains unclear. Proposed etiologies have limited explanatory scope. Therefore, we have examined the underlying pathomechanisms stated in the medical literature. To achieve our goal, we systematically reviewed original English language papers available in Pubmed and Web of Science databases before 2 October 2021. We obtained 1694 papers after eliminating duplicates. Only 357 original papers potentially pertaining to the pathogenesis of NVC were enrolled in full-text assessment for eligibility. Of these, 63 were included in the final analysis. The systematic review suggests that the anatomical and/or hemodynamical changes described are insufficient to account for NVC-related symptoms by themselves. They must coexist with additional changes such as factors associated with the affected nerve (e.g., demyelination, REZ modeling, vasculature pathology), nucleus hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion channels. Moreover, the effects of inflammatory background, altered proteome, and biochemical parameters on symptomatic NVC cannot be ignored. Further studies are needed to gain better insight into NVC pathophysiology.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Maciej Błaszczyk
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Jakub Jankowski
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Medical University of Lodz, Lodz, Poland
| | - Filip F. Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - R. Shane Tubbs
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, United States
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
- University of Queensland, Brisbane, QLD, Australia
| | - Maciej Radek
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
- *Correspondence: Maciej Radek
| |
Collapse
|
14
|
What's New in Shock, November 2021? Shock 2021; 56:655-657. [PMID: 34652338 DOI: 10.1097/shk.0000000000001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|