1
|
Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, Singh V. NLRP3 Inflammasome Inhibitors for Antiepileptogenic Drug Discovery and Development. Int J Mol Sci 2024; 25:6078. [PMID: 38892264 PMCID: PMC11172514 DOI: 10.3390/ijms25116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Inamul Haque
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, KS 66112, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pritam Thapa
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Douglas M. Burns
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Vikas Singh
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Division of Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
2
|
Peres EC, Victorio JA, Nunes-Souza V, Breithaupt-Faloppa AC, Rabelo LA, Tavares-de-Lima W, Davel AP, Rossoni LV. Simvastatin protects against intestinal ischemia/reperfusion-induced pulmonary artery dysfunction. Life Sci 2022; 306:120851. [PMID: 35926590 DOI: 10.1016/j.lfs.2022.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
AIMS The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1β and IL-6 in lung explants following II/R. SIGNIFICANCE The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.
Collapse
Affiliation(s)
- Emília C Peres
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jamaira A Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Nunes-Souza
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiza A Rabelo
- Laboratory of Cardiovascular Reactivity, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Alagoas, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Lu M, Cavazzoni E, Selvadurai H, Burren JM. Paediatric acute respiratory distress syndrome: consider the role of lymphatics. BMJ Case Rep 2022; 15:e245543. [PMID: 35896306 PMCID: PMC9335033 DOI: 10.1136/bcr-2021-245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
We present a case of a 7-day-old male infant with severe respiratory disease requiring venoarterial extracorporeal membrane oxygenation therapy with evidence of lymphangiectasia on lung biopsy. Differentiating primary versus secondary lymphangiectasis in this patient remains a riddle despite extensive investigations including an infective screen, lung biopsy and whole-genome sequencing. In addition to the standard therapies used in paediatric acute respiratory distress syndrome, such as lung-protective ventilation, permissive hypoxaemia and hypercarbia, nursing in the prone position, early use of muscle relaxants, rescue intravenous corticosteroids and broad-spectrum antibiotics, the patient was also given octreotide despite the absence of a chylothorax based on the theoretical benefit of altering the lymphatic flow. His case raises an interesting discussion around the role of lymphatics in the pathophysiology of paediatric and adult respiratory distress syndrome and prompts the exploration of novel agents which may affect lymphatic vessels used as an adjunctive therapy.
Collapse
Affiliation(s)
- Mimi Lu
- Respiratory and Sleep Department, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- The University of Sydney Discipline of Child and Adolescent Health, Westmead, New South Wales, Australia
| | - Elena Cavazzoni
- Paediatric Intensive Care Unit, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Hiran Selvadurai
- Respiratory and Sleep Department, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- The University of Sydney Discipline of Child and Adolescent Health, Westmead, New South Wales, Australia
| | - Juerg Martin Burren
- Paediatric Intensive Care Unit, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Mai N, Miller-Rhodes K, Knowlden S, Halterman MW. The post-cardiac arrest syndrome: A case for lung-brain coupling and opportunities for neuroprotection. J Cereb Blood Flow Metab 2019; 39:939-958. [PMID: 30866740 PMCID: PMC6547189 DOI: 10.1177/0271678x19835552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and multi-organ failure represent hallmarks of the post-cardiac arrest syndrome (PCAS) and predict severe neurological injury and often fatal outcomes. Current interventions for cardiac arrest focus on the reversal of precipitating cardiac pathologies and the implementation of supportive measures with the goal of limiting damage to at-risk tissue. Despite the widespread use of targeted temperature management, there remain no proven approaches to manage reperfusion injury in the period following the return of spontaneous circulation. Recent evidence has implicated the lung as a moderator of systemic inflammation following remote somatic injury in part through effects on innate immune priming. In this review, we explore concepts related to lung-dependent innate immune priming and its potential role in PCAS. Specifically, we propose and investigate the conceptual model of lung-brain coupling drawing from the broader literature connecting tissue damage and acute lung injury with cerebral reperfusion injury. Subsequently, we consider the role that interventions designed to short-circuit lung-dependent immune priming might play in improving patient outcomes following cardiac arrest and possibly other acute neurological injuries.
Collapse
Affiliation(s)
- Nguyen Mai
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Kathleen Miller-Rhodes
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Sara Knowlden
- 2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Marc W Halterman
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| |
Collapse
|
5
|
Silva PL, Gama de Abreu M. Regional distribution of transpulmonary pressure. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:385. [PMID: 30460259 DOI: 10.21037/atm.2018.10.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pressure across the lung, so-called transpulmonary pressure (PL), represents the main force acting toward to provide lung movement. During mechanical ventilation, PL is provided by respiratory system pressurization, using specific ventilator setting settled by the operator, such as: tidal volume (VT), positive end-expiratory pressure (PEEP), respiratory rate (RR), and inspiratory airway flow. Once PL is developed throughout the lungs, its distribution is heterogeneous, being explained by the elastic properties of the lungs and pleural pressure gradient. There are different methods of PL calculation, each one with importance and some limitations. Among the most known, it can be quoted: (I) direct measurement of PL; (II) elastance derived method at end-inspiration of PL; (III) transpulmonary driving pressure. Recent studies using pleural sensors in large animal models as also in human cadaver have added new and important information about PL heterogeneous distribution across the lungs. Due to this heterogeneous distribution, lung damage could happen in specific areas of the lung. In addition, it is widely accepted that high PL can cause lung damage, however the way it is delivered, whether it's compressible or tensile, may also further damage despite the values of PL achieved. According to heterogeneous distribution of PL across the lungs, the interstitium and lymphatic vessels may also interplay to disseminate lung inflammation toward peripheral organs through thoracic lymph tracts. Thus, it is conceivable that juxta-diaphragmatic area associated strong efforts leading to high values of PL may be a source of dissemination of inflammatory cells, large molecules, and plasma contents able to perpetuate inflammation in distal organs.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Abstract
Inflammasomes are high molecular weight complexes that sense and react to injury and infection. Their activation induces caspase-1 activation and release of interleukin-1β, a pro-inflammatory cytokine involved in both acute and chronic inflammatory responses. There is increasing evidence that inflammasomes, particularly the NLRP3 inflammasome, act as guardians against noninfectious material. Inappropriate activation of the NLRP3 inflammasome contributes to the progression of many noncommunicable diseases such as gout, type II diabetes, and Alzheimer's disease. Inhibiting the inflammasome may significantly reduce damaging inflammation and is therefore regarded as a therapeutic target. Currently approved inhibitors of interleukin-1β are rilonacept, canakinumab, and anakinra. However, these proteins do not possess ideal pharmacokinetic properties and are unlikely to easily cross the blood-brain barrier. Because inflammation can contribute to neurological disorders, this review focuses on the development of small-molecule inhibitors of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Alex G Baldwin
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - David Brough
- Faculty of Life Sciences, The University of Manchester , AV Hill Building, Oxford Road, Manchester M13 9PT, U.K
| | - Sally Freeman
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester , Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
7
|
Protective Effect of Estradiol on Acute Lung Inflammation Induced by an Intestinal Ischemic Insult is Dependent on Nitric Oxide. Shock 2013; 40:203-9. [DOI: 10.1097/shk.0b013e3182a01e24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 2012; 28:551-64. [PMID: 22562449 DOI: 10.1007/s10103-012-1088-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Collapse
|
9
|
Intestinal lymph-borne factors induce lung release of inflammatory mediators and expression of adhesion molecules after an intestinal ischemic insult. J Surg Res 2011; 176:195-201. [PMID: 21872880 DOI: 10.1016/j.jss.2011.06.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. MATERIAL AND METHODS Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. RESULTS Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1β, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB(4) and TXB(2) were found to be significantly increased. CONCLUSIONS These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R.
Collapse
|
10
|
Alexander JS, Ganta VC, Jordan PA, Witte MH. Gastrointestinal lymphatics in health and disease. ACTA ACUST UNITED AC 2011; 17:315-35. [PMID: 20022228 DOI: 10.1016/j.pathophys.2009.09.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 12/17/2022]
Abstract
Lymphatics perform essential transport and immune regulatory functions to maintain homeostasis in the gastrointestinal (GI) system. Although blood and lymphatic vessels function as parallel and integrated systems, our understanding of lymphatic structure, regulation and functioning lags far behind that of the blood vascular system. This chapter reviews lymphatic flow, differences in lymphangiogenic and hemangiogenic factors, lymphatic fate determinants and structural features, and examines how altered molecular signaling influences lymphatic function in organs of the GI system. Innate errors in lymphatic development frequently disturb GI functioning and physiology. Expansion of lymphatics, a prominent feature of GI inflammation, may also play an important role in tissue restitution following injury. Destruction or dysregulation of lymphatics, following injury, surgery or chronic inflammation also exacerbates GI disease activity. Understanding the physiological roles played by GI lymphatics is essential to elucidating their underlying contributions to forms of congenital and acquired forms of GI pathology, and will provide novel approaches for therapy.
Collapse
Affiliation(s)
- J S Alexander
- Louisiana State University Health Sciences Center-Shreveport, Molecular and Cellular Physiology, Shreveport, LA, United States
| | | | | | | |
Collapse
|
11
|
Nitric oxide mediates lung vascular permeability and lymph-borne IL-6 after an intestinal ischemic insult. Shock 2009; 32:55-61. [PMID: 18838940 DOI: 10.1097/shk.0b013e31818bb7a1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute lung injury following intestinal I/R depends on neutrophil-endothelial cell interactions and on cytokines drained from the gut through the lymph. Among the mediators generated during I/R, increased serum levels of IL-6 and NO are also found and might be involved in acute lung injury. Once intestinal ischemia itself may be a factor of tissue injury, in this study, we investigated the presence of IL-6 in lymph after intestinal ischemia and its effects on human umbilical vein endothelial cells (HUVECs) detachment. The involvement of NO on the increase of lung and intestinal microvascular permeability and the lymph effects on HUVEC detachment were also studied. Upon anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2-h intestinal reperfusion. Rats were treated with the nonselective NO synthase (NOS) inhibitor L-NAME (N(omega)-nitro-L-arginine methyl ester) or with the selective inhibitor of iNOS aminoguanidine 1 h before superior mesenteric artery occlusion. Whereas treatment with L-NAME during ischemia increased both IL-6 levels in lymph and lung microvascular permeability, aminoguanidine restored the augmented intestinal plasma extravasation due to ischemia and did not induce IL-6 in lymph. On the other hand, IL-6 and lymph of intestinal I/R detached the HUVECs, whereas lymph of ischemic rats upon L-NAME treatment when incubated with anti-IL-6 prevented HUVEC detachment. It is shown that the intestinal ischemia itself is sufficient to increase intestinal microvascular permeability with involvement of iNOS activation. Intestinal ischemia and absence of constitutive NOS activity leading to additional intestinal stress both cause release of IL-6 and increase of lung microvascular permeability. Because anti-IL-6 prevented the endothelial cell injury caused by lymph at the ischemia period, the lymph-borne IL-6 might be involved with endothelial cell activation. At the reperfusion period, this cytokine does not seem to be modulated by NO.
Collapse
|
12
|
WHAT'S NEW IN SHOCK, DECEMBER 2007? Shock 2007. [DOI: 10.1097/shk.0b013e31815a3d84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|