1
|
Effect of early fluid resuscitation combined with low dose cyclophosphamide on intestinal barrier function in severe sepsis rats. Drug Deliv Transl Res 2018; 8:1254-1264. [PMID: 30112606 DOI: 10.1007/s13346-018-0573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To investigate the effect of early fluid resuscitation on intestinal microecology in rats with severe sepsis. The severe sepsis model used was mainly cecal ligation perforation (CLP) model. Male SD rats were randomly divided into five groups: sham, CLP, CLP + normal saline (NS), CLP + cyclophosphamide (CTX), and CLP + NS + CTX. (1) The levels of IL-6, IL-10, and TNF-α in peripheral blood were measured by ELISA. (2) The expression of occludin/β-action in colonic tissue of mice was examined by Western Blot. (3) The intestinal permeability was measured by FD70 detection. (4) The length of the chorionic membrane was measured by colon histopathological staining. (5) The intestinal epithelial cell apoptosis was measured with the apoptosis index. (1) The rat model of severe sepsis was successfully replicated, and the 7-day survival rate of sepsis mice in each group was analyzed. (2) The expression level of splenic junction protein and the pathological damage in colonic tissue of the severe sepsis mice was significantly different between sham, CLP, CTX, NS, and NS + CTX (P < 0.05). The expression of tight junction protein in the NS + CTX mice was the highest, and the pathological damage was the smallest. (3) The colonic tissue apoptosis and intestinal permeability in the severe sepsis mice were compared with those of the colon tissues (P < 0.05). (4) The expression levels of IL-6, IL-10, and TNF-α in peripheral blood were significantly increased after severe sepsis (P < 0.01). The expression of IL-6 and TNF-alpha in each treatment group decreased (P < 0.05), while the expression of IL-10 in NS + CTX group increased significantly (P < 0.01). (1) We successfully replicated the rat model of severe sepsis. (2) Early fluid intervention and cyclophosphamide treatment can significantly improve the 7-day survival rate of the sepsis mice. (3) The fluid resuscitation and cyclophosphamide can delay intestinal damage to the intestinal tract barrier function and play a protective role.
Collapse
|
2
|
Jin W, Liang X, Brooks A, Futrega K, Liu X, Doran MR, Simpson MJ, Roberts MS, Wang H. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ 2018; 6:e6072. [PMID: 30564525 PMCID: PMC6286806 DOI: 10.7717/peerj.6072] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are a promising tool for cell-based therapies in the treatment of tissue injury. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a significant role in directing MSC homing to sites of injury. However in vivo MSC distribution following intravenous transplantation remains poorly understood, potentially hampering the precise prediction and evaluation of therapeutic efficacy. Methods A murine model of partial ischemia/reperfusion (I/R) is used to induce liver injury, increase the hepatic levels of SDF-1, and study in vivo MSC distribution. Hypoxia-preconditioning increases the expression of CXCR4 in human bone marrow-derived MSCs. Quantitative assays for human DNA using droplet digital PCR (ddPCR) allow us to examine the in vivo kinetics of intravenously infused human MSCs in mouse blood and liver. A mathematical model-based system is developed to characterize in vivo homing of human MSCs in mouse models with SDF-1 levels in liver and CXCR4 expression on the transfused MSCs. The model is calibrated to experimental data to provide novel estimates of relevant parameter values. Results Images of immunohistochemistry for SDF-1 in the mouse liver with I/R injury show a significantly higher SDF-1 level in the I/R injured liver than that in the control. Correspondingly, the ddPCR results illustrate a higher MSC concentration in the I/R injured liver than the normal liver. CXCR4 is overexpressed in hypoxia-preconditioned MSCs. An increased number of hypoxia-preconditioned MSCs in the I/R injured liver is observed from the ddPCR results. The model simulations align with the experimental data of control and hypoxia-preconditioned human MSC distribution in normal and injured mouse livers, and accurately predict the experimental outcomes with different MSC doses. Discussion The modelling results suggest that SDF-1 in organs is an effective in vivo attractant for MSCs through the SDF-1/CXCR4 axis and reveal the significance of the SDF-1/CXCR4 chemotaxis on in vivo homing of MSCs. This in vivo modelling approach allows qualitative characterization and prediction of the MSC homing to normal and injured organs on the basis of clinically accessible variables, such as the MSC dose and SDF-1 concentration in blood. This model could also be adapted to abnormal conditions and/or other types of circulating cells to predict in vivo homing patterns.
Collapse
Affiliation(s)
- Wang Jin
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Xiaowen Liang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Anastasia Brooks
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kathryn Futrega
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Xin Liu
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Michael R Doran
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia.,Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.,Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
| | - Haolu Wang
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
3
|
Dutra B, Carmen Mora M, Gerhardson TI, Sporbert B, Dufresne A, Bittner KR, Lovewell C, Rust MJ, Tirabassi MV, Masi L, Lipkens B, Kennedy DR. A Novel Macroscale Acoustic Device for Blood Filtration. J Med Device 2018; 12:0110081-110087. [PMID: 29719583 DOI: 10.1115/1.4038498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/07/2017] [Indexed: 02/01/2023] Open
Abstract
Retransfusion of a patient's own shed blood during cardiac surgery is attractive since it reduces the need for allogeneic transfusion, minimizes cost, and decreases transfusion related morbidity. Evidence suggests that lipid micro-emboli associated with the retransfusion of the shed blood are the predominant causes of the neurocognitive disorders. We have developed a novel acoustophoretic filtration system that can remove lipids from blood at clinically relevant flow rates. Unlike other acoustophoretic separation systems, this ultrasound technology works at the macroscale, and is therefore able to process larger flow rates than typical micro-electromechanical system (MEMS) scale acoustophoretic separation devices. In this work, we have first demonstrated the systematic design of the acoustic device and its optimization, followed by examining the feasibility of the device to filter lipids from the system. Then, we demonstrate the effects of the acoustic waves on the shed blood; examining hemolysis using both haptoglobin formation and lactate dehydrogenase release, as well as the potential of platelet aggregation or inflammatory cascade activation. Finally, in a porcine surgical model, we determined the potential viability of acoustic trapping as a blood filtration technology, as the animal responded to redelivered blood by increasing both systemic and mean arterial blood pressure.
Collapse
Affiliation(s)
- Brian Dutra
- College of Engineering,Western New England University, Springfield, MA 01119
| | - Maria Carmen Mora
- Department of Surgery, University of Massachusetts Medical School-Baystate, Springfield, MA 01109
| | - Tyler I Gerhardson
- College of Engineering, Western New England University, Springfield, MA 01119
| | - Brianna Sporbert
- College of Engineering, Western New England University, Springfield, MA 01119
| | - Alexandre Dufresne
- Baystate Research Facility, University of Massachusetts Medical School-Baystate, Springfield, MA 01109
| | - Katharine R Bittner
- Department of Surgery, University of Massachusetts Medical School-Baystate, Springfield, MA 01109
| | - Carolanne Lovewell
- Baystate Research Facility, University of Massachusetts Medical School-Baystate, Springfield, MA 01109
| | - Michael J Rust
- College of Engineering, Western New England University, Springfield, MA 01119
| | - Michael V Tirabassi
- Department of Surgery, University of Massachusetts Medical School-Baystate, Springfield, MA 01109
| | - Louis Masi
- Flo Design Sonics Inc., Wilbraham, MA 01095
| | - Bart Lipkens
- College of Engineering,Western New England University, Springfield, MA 01119
| | - Daniel R Kennedy
- College of Pharmacy, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119 e-mail:
| |
Collapse
|
4
|
Miller SE, Bell CS, McClain MS, Cover TL, Giorgio TD. Dynamic Computational Model of Symptomatic Bacteremia to Inform Bacterial Separation Treatment Requirements. PLoS One 2016; 11:e0163167. [PMID: 27657881 PMCID: PMC5033423 DOI: 10.1371/journal.pone.0163167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 11/21/2022] Open
Abstract
The rise of multi-drug resistance has decreased the effectiveness of antibiotics, which has led to increased mortality rates associated with symptomatic bacteremia, or bacterial sepsis. To combat decreasing antibiotic effectiveness, extracorporeal bacterial separation approaches have been proposed to capture and separate bacteria from blood. However, bacteremia is dynamic and involves host-pathogen interactions across various anatomical sites. We developed a mathematical model that quantitatively describes the kinetics of pathogenesis and progression of symptomatic bacteremia under various conditions, including bacterial separation therapy, to better understand disease mechanisms and quantitatively assess the biological impact of bacterial separation therapy. Model validity was tested against experimental data from published studies. This is the first multi-compartment model of symptomatic bacteremia in mammals that includes extracorporeal bacterial separation and antibiotic treatment, separately and in combination. The addition of an extracorporeal bacterial separation circuit reduced the predicted time of total bacteria clearance from the blood of an immunocompromised rodent by 49%, compared to antibiotic treatment alone. Implementation of bacterial separation therapy resulted in predicted multi-drug resistant bacterial clearance from the blood of a human in 97% less time than antibiotic treatment alone. The model also proposes a quantitative correlation between time-dependent bacterial load among tissues and bacteremia severity, analogous to the well-known ‘area under the curve’ for characterization of drug efficacy. The engineering-based mathematical model developed may be useful for informing the design of extracorporeal bacterial separation devices. This work enables the quantitative identification of the characteristics required of an extracorporeal bacteria separation device to provide biological benefit. These devices will potentially decrease the bacterial load in blood. Additionally, the devices may achieve bacterial separation rates that allow consequent acceleration of bacterial clearance in other tissues, inhibiting the progression of symptomatic bacteremia, including multi-drug resistant variations.
Collapse
Affiliation(s)
- Sinead E. Miller
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Charleson S. Bell
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Todd D. Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
5
|
Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun 2016; 84:2933-43. [PMID: 27481237 DOI: 10.1128/iai.00290-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Poly-N-acetylglucosamine (PNAG) is a major component of the Staphylococcus epidermidis biofilm extracellular matrix. However, it is not yet clear how this polysaccharide impacts the host immune response and infection-associated pathology. Faster neutrophil recruitment and bacterial clearance were observed in mice challenged intraperitoneally with S. epidermidis biofilm cells of the PNAG-producing 9142 strain than in mice similarly challenged with the isogenic PNAG-defective M10 mutant. Moreover, intraperitoneal priming with 9142 cells exacerbated liver inflammatory pathology induced by a subsequent intravenous S. epidermidis challenge, compared to priming with M10 cells. The 9142-primed mice had elevated splenic CD4(+) T cells producing gamma interferon and interleukin-17A, indicating that PNAG promoted cell-mediated immunity. Curiously, despite having more marked liver tissue pathology, 9142-primed mice also had splenic T regulatory cells with greater suppressive activity than those of their M10-primed counterparts. By showing that PNAG production by S. epidermidis biofilm cells exacerbates host inflammatory pathology, these results together suggest that this polysaccharide contributes to the clinical features associated with biofilm-derived infections.
Collapse
|
6
|
Cole LE, Zhang J, Kesselly A, Anosova NG, Lam H, Kleanthous H, Yethon JA. Limitations of Murine Models for Assessment of Antibody-Mediated Therapies or Vaccine Candidates against Staphylococcus epidermidis Bloodstream Infection. Infect Immun 2016; 84:1143-1149. [PMID: 26857577 PMCID: PMC4807487 DOI: 10.1128/iai.01472-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus epidermidis is normally a commensal colonizer of human skin and mucus membranes, but, due to its ability to form biofilms on indwelling medical devices, it has emerged as a leading cause of nosocomial infections. Bacteremia or bloodstream infection is a frequent and costly complication resulting from biofilm fouling of medical devices. Our goal was to develop a murine model of S. epidermidis infection to identify potential vaccine targets for the prevention of S. epidermidis bacteremia. However, assessing the contribution of adaptive immunity to protection against S. epidermidis challenge was complicated by a highly efficacious innate immune response in mice. Naive mice rapidly cleared S. epidermidis infections from blood and solid organs, even when the animals were immunocompromised. Cyclophosphamide-mediated leukopenia reduced the size of the bacterial challenge dose required to cause lethality but did not impair clearance after a nonlethal challenge. Nonspecific innate immune stimulation, such as treatment with a Toll-like receptor 4 (TLR4) agonist, enhanced bacterial clearance. TLR2 signaling was confirmed to accelerate the clearance of S. epidermidis bacteremia, but TLR2(-/-)mice could still resolve a bloodstream infection. Furthermore, TLR2 signaling played no role in the clearance of bacteria from the spleen. In conclusion, these data suggest that S. epidermidis bloodstream infection is cleared in a highly efficient manner that is mediated by both TLR2-dependent and -independent innate immune mechanisms. The inability to establish a persistent infection in mice, even in immunocompromised animals, rendered these murine models unsuitable for meaningful assessment of antibody-mediated therapies or vaccine candidates.
Collapse
Affiliation(s)
- Leah E Cole
- Sanofi Pasteur, Cambridge, Massachusetts, USA
| | | | | | | | - Hubert Lam
- Sanofi Pasteur, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
7
|
Abstract
Sepsis is a complex medical condition characterized by a systemic inflammatory response in the setting of infection. We hypothesized that combining antibiotics plus an immunosuppressant would protect against the morbidity and mortality of polymicrobial sepsis in mice better than would antibiotics alone. We used a murine cecal-ligation-and-puncture model in which mice were treated either with imipenem plus cyclophosphamide or imipenem alone. Titration to a low cyclophosphamide dose revealed that combination therapy increased survival by 20% compared with imipenem alone (56% vs. 36%, P < 0.001). To investigate the mechanism by which combination therapy did this, we reviewed quantitative and qualitative markers of the systemic immune response, end-organ damage, and the local immune response at the site of injury. Cyclophosphamide treatment was not associated with depletion of peripheral leukocytes or differences in pulmonary damage. However, mice that received combination therapy had higher plasma granulocyte colony-stimulating factor levels than did those treated with antibiotics alone. In addition, mice treated with cyclophosphamide had higher levels of bacterial colonization in intestinal Peyer's patch lymph nodes at 72 h after the septic insult. Intraperitoneal macrophage phenotypes and phagocytosis activity did not differ between groups. We conclude that the inflammatory response plays a significant role in the mortality of polymicrobial sepsis and that the regulation of this element is both feasible and beneficial in this disease model.
Collapse
|
8
|
Pavlovsky L, Sturtevant RA, Younger JG, Solomon MJ. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2036-42. [PMID: 25602470 PMCID: PMC5563478 DOI: 10.1021/la5044156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices.
Collapse
Affiliation(s)
- Leonid Pavlovsky
- Department of Chemical Engineering and ‡Department of Emergency Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
9
|
Coagulase-negative Staphylococcus, catheter-related, bloodstream infections and their association with acute phase markers of inflammation in the intensive care unit: An observational study. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2013; 23:204-8. [PMID: 24294276 DOI: 10.1155/2012/198383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To examine the relationship between the isolation of coagulase-negative Staphylococcus in blood cultures and acute phase markers of inflammation. METHODS The present study was a prospective observational analysis conducted at three medical/surgical intensive care units (ICUs) involving adult patients with an expected ICU stay of more than 24 h duration. RESULTS Of the 598 patients enrolled, 573 developed suspected bloodstream infection and 434 (72.6%) had blood cultures sent 24 h after ICU admission; 142 were excluded due to positive cultures from other sites. Of the remaining 292 patients, 31 (10.7%) grew coagulase-negative Staphylococcus, 59 (20.2%) grew known pathogenic organisms and 202 (69.2%) did not grow any organisms in their blood cultures. Twenty-five patients without suspicion of infection served as the control group. Interleukin (IL)-6, procalcitonin (PCT) and C-reactive protein (CRP) levels were highest among the known pathogen group (IL-6 271.8 U/L, PCT 4.6 U/L and CRP 164 mg/L), were similar between the coagulase-negative Staphylococcus and negative culture groups (IL-6 67.0 U/L versus 61.4 U/L [P=1.00]; PCT 1.0 U/L versus 0.9 U/L [P=0.80]; and CRP 110 mg/L versus 103 mg/L [P=0.75]), and were lowest in the control group (IL-6 31.0 U/L, PCT 0.2 U/L and CRP 41.0 mg/L). In the coagulase-negative Staphylococcus group, patients who died by day 28 had increased inflammatory bio-marker levels compared with survivors, although the differences were not statistically significant. CONCLUSIONS Coagulase-negative Staphylococcus isolated from blood cultures were associated with lower levels of inflammation compared with bloodstream infections due to known pathogens and were comparable with levels in patients with negative cultures.
Collapse
|
10
|
Sampling Theory for Molecular- and Blood Culture-Based Techniques. POINT OF CARE 2013. [DOI: 10.1097/poc.0b013e318265f7c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Pavlovsky L, Younger JG, Solomon MJ. In situ rheology of Staphylococcus epidermidis bacterial biofilms. SOFT MATTER 2013; 9:122-131. [PMID: 25544855 PMCID: PMC4276346 DOI: 10.1039/c2sm27005f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We developed a method to grow Staphylococcus epidermidis bacterial biofilms and characterize their rheological properties in situ in a continuously fed bioreactor incorporated into a parallel plate rheometer. The temperature and shear rates of growth modeled bloodstream conditions, a common site of S. epidermidis infection. We measured the linear elastic (G') and viscous moduli (G″) of the material using small-amplitude oscillatory rheology and the yield stress using non-linear creep rheology. We found that the elastic and viscous moduli of the S. epidermidis biofilm were 11 ± 3 Pa and 1.9 ± 0.5 Pa at a frequency of 1 Hz (6.283 rad per s) and that the yield stress was approximately 20 Pa. We modeled the linear creep response of the biofilm using a Jeffreys model and found that S. epidermidis has a characteristic relaxation time of approximately 750 seconds and a linear creep viscosity of 3000 Pa s. The effects on the linear viscoelastic moduli of environmental stressors, such as NaCl concentration and extremes of temperature, were also studied. We found a non-monotonic relationship between moduli and NaCl concentrations, with the stiffest material properties found at human physiological concentrations (135 mM). Temperature dependent rheology showed hysteresis in the moduli when heated and cooled between 5 °C and 60 °C. Through these experiments, we demonstrated that biofilms are rheologically complex materials that can be characterized by a combination of low modulus (~10 Pa), long relaxation time (~103 seconds), and a finite yield stress (20 Pa). This suggests that biofilms should be viewed as soft viscoelastic solids whose properties are determined in part by local environmental conditions. The in situ growth method introduced here can be adapted to a wide range of biofilm systems and applied over a broad spectrum of rheological and environmental conditions because the technique minimizes the risk of irreversible, non-linear deformation of the microbial specimen before analysis.
Collapse
Affiliation(s)
- Leonid Pavlovsky
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. Fax: +1 734 763 0459; Tel: +1 734 764 3119
| | - John G. Younger
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA. Tel: +1 734 647 7564
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael J. Solomon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. Fax: +1 734 763 0459; Tel: +1 734 764 3119
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Thornton MM, Chung-Esaki HM, Irvin CB, Bortz DM, Solomon MJ, Younger JG. Multicellularity and antibiotic resistance in Klebsiella pneumoniae grown under bloodstream-mimicking fluid dynamic conditions. J Infect Dis 2012; 206:588-95. [PMID: 22711903 DOI: 10.1093/infdis/jis397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND While the importance of fluid dynamical conditions is well recognized in the growth of biofilms, their role during bacteremia is unknown. We examined the impact of physiological fluid shear forces on the development of multicellular aggregates of Klebsiella pneumoniae. METHODS Wild-type and O-antigen or capsular mutants of K. pneumoniae were grown as broth culture in a Taylor-Couette flow cell configured to provide continuous shear forces comparable to those encountered in the human arterial circulation (ie, on the order of 1.0 Pa). The size distribution and antibiotic resistance of aggregates formed in this apparatus were determined, as was their ability to persist in the bloodstream of mice following intravenous injection. RESULTS Unlike growth in shaking flasks, bacteria grown in the test apparatus readily formed aggregates, a phenotype largely absent in capsular mutants and to a lesser degree in O-antigen mutants. Aggregates were found to persist in the bloodstream of mice. Importantly, organisms grown under physiological shear were found to have an antibiotic resistance phenotype intermediate between that of fully planktonic and biofilm states. CONCLUSIONS When grown under intravascular-magnitude fluid dynamic conditions, K. pneumoniae spontaneously develops into multicellular aggregates that are capable of persisting in the circulation and exhibit increased antibiotic resistance.
Collapse
Affiliation(s)
- Margaret M Thornton
- Michigan Critical Injury and Illness Research Center and Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
13
|
Multiplex PCR pathogen detection in two severely burned patients with suspected septicemia. J Burn Care Res 2012; 32:e172-7. [PMID: 21926913 DOI: 10.1097/bcr.0b013e318231c140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The case studies reported in this article strive to illustrate the clinical value of multiplex polymerase chain reaction (PCR)-based pathogen detection in patients with burn sepsis. Adult (age ≥18 years) burn patients (≥20% TBSA) presenting with signs and symptoms of burn sepsis were enrolled into a prospective, observational trial. Patients received PCR testing in parallel to routine blood cultures. The authors report two cases in which PCR was used to rapidly detect pathogens in whole blood from burn patients with suspected septicemia. PCR identified Escherichia coli in 5.8 hours in case 1. Blood and sputum cultures required 17 hours for Gram stain results. Empiric ceftriaxone therapy was initiated. Blood cultures required an additional 18 hours to identify the same pathogen detected by PCR. Ceftriaxone was replaced with ciprofloxacin for improved coverage. Follow-up antimicrobial susceptibility results revealed intermediate ciprofloxacin resistance. Meropenam therapy was initiated. In case 2, PCR detected Pseudomonas aeruginosa in 5.45 hours while blood cultures remained negative. Respiratory cultures became positive for P. aeruginosa 2 days later. Serial PCR samples continued detecting P. aeruginosa despite negative blood cultures and appropriate antimicrobial therapy. The patient later became hypotensive and coagulopathic and expired. For both patient cases, PCR identified high-risk pathogens faster than culture methods. In the second patient case, PCR identified the presence of pathogen DNA despite negative cultures before the onset of septic shock and presumptive disseminated intravascular coagulation. These results warrant further investigation to determine the clinical significance of pathogen DNA in burn sepsis.
Collapse
|
14
|
Nypaver CM, Thornton MM, Yin SM, Bracho DO, Nelson PW, Jones AE, Bortz DM, Younger JG. Dynamics of human complement-mediated killing of Klebsiella pneumoniae. Am J Respir Cell Mol Biol 2009; 43:585-90. [PMID: 20008281 DOI: 10.1165/rcmb.2009-0292oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With an in vitro system that used a luminescent strain of Klebsiella pneumoniae to assess bacterial metabolic activity in near-real-time, we investigated the dynamics of complement-mediated attack in healthy individuals and in patients presenting to the emergency department with community-acquired severe sepsis. A novel mathematical/statistical model was developed to simplify light output trajectories over time into two fitted parameters, the rate of complement activation and the delay from activation to the onset of killing. Using Factor B-depleted serum, the alternative pathway was found to be the primary bactericidal effector: In the absence of B, C3 opsonization as measured by flow cytometry did not progress and bacteria proliferated near exponentially. Defects in bacterial killing were easily demonstrable in patients with severe sepsis compared with healthy volunteers. In most patients with sepsis, the rate of activation was higher than in normal subjects but was associated with a prolonged delay between activation and bacterial killing (P < 0.05 for both). Theoretical modeling suggested that this combination of accentuated but delayed function should allow successful bacterial killing but with significantly greater complement activation. The use of luminescent bacteria allowed for the development of a novel and powerful tool for assessing complement immunology for the purposes of mechanistic study and patient evaluation.
Collapse
Affiliation(s)
- Christina M Nypaver
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48109-3300, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bracho DO, Barsan L, Arekapudi SR, Thompson JA, Hen J, Stern SA, Younger JG. Antibacterial properties of an iron-based hemostatic agent in vitro and in a rat wound model. Acad Emerg Med 2009; 16:656-60. [PMID: 19538502 DOI: 10.1111/j.1553-2712.2009.00439.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Topical hemostatic agents are currently employed on the battlefield for control of major hemorrhage and have potential for use in civilian settings. Some of these compounds may also be antibacterial. Given the behavior of these compounds, the purpose of this study was to assess the potential antibacterial properties of an iron oxyacid-based topical hemostatic agent against three problematic species of wound-contaminating microorganisms: Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis. METHODS Bacteria were treated in vitro with the test powder for 30 minutes and then assessed for viability. Long-term (8-hour) inhibition of bacterial growth was also examined. In vivo, a rat full-thickness 1-cm(2) skin wound was studied. Wounds were contaminated, treated, and then quantitatively cultured 24 hours later. RESULTS The lethal dose for 99% of the organisms (LD(99)) for the compound against each organism ranged from 0.89 (+/-0.28) to 4.77 (+/-0.66) mg/mL (p < 0.05). The compound produced sustained inhibition over 8 hours at both 1 and 5 mg/mL (p < 0.05 for each), for P. aeruginosa, S. epidermidis, and S. aureus. In vivo, activity was noted against only P. aeruginosa, with the largest magnitude reduction being on the order of 3-log colony-forming units (CFU; p < 0.01). CONCLUSIONS The iron-based agent studied possesses significant in vitro and lesser in vivo antibacterial effects. Further optimization of the delivery, dosing, and evaluation of this agent in a larger animal model with more humanlike skin structures may reveal important wound effects beyond control of bleeding.
Collapse
Affiliation(s)
- David O Bracho
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
What's new in Shock, November 2008? Shock 2008; 30:485-6. [PMID: 18923300 DOI: 10.1097/shk.0b013e318189122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|