1
|
Cheng MZ, Luo JH, Li X, Liu FY, Zhou WJ. Zinc pretreatment for protection against intestinal ischemia-reperfusion injury. World J Gastrointest Surg 2024; 16:3843-3856. [PMID: 39734451 PMCID: PMC11650234 DOI: 10.4240/wjgs.v16.i12.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear. AIM To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage. METHODS C57BL/6 mice were pretreated with zinc sulfate (ZnSO4, 10 mg/kg) daily for three days before I/R injury was induced via superior mesenteric artery occlusion (SMAO) and abdominal aortic occlusion (AAO) models. Tissue and serum samples were collected to evaluate intestinal, liver, and kidney damage using Chiu's score, Suzuki score, and histopathological analysis. Caco-2 cells and intestinal organoids were used for in vitro hypoxia-reoxygenation injury models to measure reactive oxygen species (ROS) and superoxide dismutase (SOD) levels. RESULTS Zinc pretreatment significantly reduced intestinal damage in the SMAO and AAO models (P < 0.001). The serum levels of liver enzymes (alanine aminotransferase, aspartate aminotransferase) and kidney markers (creatinine and urea) were lower in the zinc-treated mice than in the control mice, indicating reduced hepatic and renal injury. In vitro, zinc decreased ROS levels and increased SOD activity in Caco-2 cells subject to hypoxia-reoxygenation injury. Intestinal organoids pretreated with zinc exhibited enhanced resilience to hypoxic injury compared to controls. CONCLUSION Zinc pretreatment mitigates II/RI and reduces associated multiorgan damage. These findings suggest that zinc has potential clinical applications in protecting against I/R injuries.
Collapse
Affiliation(s)
- Ming-Zhen Cheng
- State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jia-Hao Luo
- State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xin Li
- Department of Interventional Radiology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, China
| | - Wei-Jie Zhou
- State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
2
|
Lebrun LJ, Dusuel A, Xolin M, Le Guern N, Grober J. Activation of TLRs Triggers GLP-1 Secretion in Mice. Int J Mol Sci 2023; 24:5333. [PMID: 36982420 PMCID: PMC10049702 DOI: 10.3390/ijms24065333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
The gastrointestinal tract constitutes a large interface with the inner body and is a crucial barrier against gut microbiota and other pathogens. As soon as this barrier is damaged, pathogen-associated molecular patterns (PAMPs) are recognized by immune system receptors, including toll-like receptors (TLRs). Glucagon-like peptide 1 (GLP-1) is an incretin that was originally involved in glucose metabolism and recently shown to be rapidly and strongly induced by luminal lipopolysaccharides (LPS) through TLR4 activation. In order to investigate whether the activation of TLRs other than TLR4 also increases GLP-1 secretion, we used a polymicrobial infection model through cecal ligation puncture (CLP) in wild-type and TLR4-deficient mice. TLR pathways were assessed by intraperitoneal injection of specific TLR agonists in mice. Our results show that CLP induces GLP-1 secretion both in wild-type and TLR4-deficient mice. CLP and TLR agonists increase gut and systemic inflammation. Thus, the activation of different TLRs increases GLP-1 secretion. This study highlights for the first time that, in addition to an increased inflammatory status, CLP and TLR agonists also strongly induce total GLP-1 secretion. Microbial-induced GLP-1 secretion is therefore not only a TLR4/LPS-cascade.
Collapse
Affiliation(s)
- Lorène J. Lebrun
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 21000 Dijon, France
| | - Alois Dusuel
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Marion Xolin
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Jacques Grober
- INSERM LNC UMR1231, Université de Bourgogne, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France
- Institut Agro Dijon, 21000 Dijon, France
| |
Collapse
|
3
|
Guo J, Lou X, Gong W, Bian J, Liao Y, Wu Q, Jiao Q, Zhang X. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol 2022; 12:953474. [PMID: 36250050 PMCID: PMC9557054 DOI: 10.3389/fcimb.2022.953474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that the effect of intestinal microecological disorders on organismal physiology is not limited to the digestive system, which provides new perspectives for microecological studies and new ideas for clinical diagnosis and prevention of microecology-related diseases. Stress triggers impairment of intestinal mucosal barrier function, which could be duplicated by animal models. In this paper, pathological animal models with high prevalence and typical stressors-corresponding to three major stressors of external environmental factors, internal environmental factors, and social psychological factors, respectively exemplified by burns, intestinal ischemia-reperfusion injury (IIRI), and depression models-were selected. We summarized the construction and evaluation of these typical animal models and the effects of stress on the organism and intestinal barrier, as well as systematically discussed the effects of different stresses on the intestinal mucosal barrier and intestinal microecology.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Yuhan Liao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi Wu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Haruta Y, Kobayakawa K, Saiwai H, Hata K, Tamaru T, Iura H, Ono G, Kitade K, Kijima K, Iida K, Kawaguchi K, Matsumoto Y, Kubota K, Maeda T, Konno DJ, Okada S, Nakashima Y. Zinc chelator treatment in crush syndrome model mice attenuates ischemia-reperfusion-induced muscle injury due to suppressing of neutrophil infiltration. Sci Rep 2022; 12:15580. [PMID: 36114355 PMCID: PMC9481620 DOI: 10.1038/s41598-022-19903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
In crush syndrome, massive muscle breakdown resulting from ischemia-reperfusion muscle injury can be a life-threatening condition that requires urgent treatment. Blood reperfusion into the ischemic muscle triggers an immediate inflammatory response, and neutrophils are the first to infiltrate and exacerbate the muscle damage. Since free zinc ion play a critical role in the immune system and the function of neutrophils is impaired by zinc depletion, we hypothesized that the administration of a zinc chelator would be effective for suppressing the inflammatory reaction at the site of ischemia-reperfusion injury and for improving of the pathology of crush syndrome. A crush syndrome model was created by using a rubber tourniquet to compress the bilateral hind limbs of mice at 8 weeks. A zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) was administered immediately after reperfusion in order to assess the anti-inflammatory effect of the chelator for neutrophils. Histopathological evaluation showed significantly less muscle breakdown and fewer neutrophil infiltration in TPEN administration group compared with control group. In addition, the expression levels of inflammatory cytokine and chemokine such as IL-6, TNFα, CXCL1, CXCL2, CXCR2, CCL2 in ischemia-reperfusion injured muscle were significantly suppressed with TPEN treatment. Less dilatation of renal tubules in histological evaluation in renal tissue and significantly better survival rate were demonstrated in TPEN treatment for ischemia-reperfusion injury in crush syndrome. The findings of our study suggest that zinc chelators contributed to the resolution of exacerbation of the inflammatory response and attenuation of muscle breakdown in the acute phase after crush syndrome. In addition, our strategy of attenuation of the acute inflammatory reaction by zinc chelators may provide a promising therapeutic strategy not only for crush syndrome, but also for other diseases driven by inflammatory reactions.
Collapse
Affiliation(s)
- Yohei Haruta
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuhiro Hata
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Tetsuya Tamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirotaka Iura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Gentaro Ono
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Kitade
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Kijima
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Keiichiro Iida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kensuke Kubota
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Takeshi Maeda
- Department of Orthopaedic Surgery, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Dai-Jiro Konno
- Department of Pathophysiology, Medical Institute of Bioregulation, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Al-Sadi R, Nighot P, Nighot M, Haque M, Rawat M, Ma TY. Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2-Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:872-884. [PMID: 33607043 PMCID: PMC8110190 DOI: 10.1016/j.ajpath.2021.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Prashant Nighot
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Meghali Nighot
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Thomas Y Ma
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
6
|
Zhang S, Zhong R, Han H, Yi B, Yin J, Chen L, Zhang H. Short-Term Lincomycin Exposure Depletion of Murine Microbiota Affects Short-Chain Fatty Acids and Intestinal Morphology and Immunity. Antibiotics (Basel) 2020; 9:antibiotics9120907. [PMID: 33327537 PMCID: PMC7765009 DOI: 10.3390/antibiotics9120907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lincomycin, as one of the most commonly used antibiotics, may cause intestinal injury, enteritis and other side effects, but it remains unknown whether these effects are associated with microbial changes and the effects of different doses of lincomycin on infants. Here, 21-day old mice were exposed to 1 and 5 g/L lincomycin to explore the effects of lincomycin on the gut microbiota, metabolites and inflammation. Compared to the control mice, 1 g/L lincomycin exposure decreased the body weight gain of mice (p < 0.05). Both 1 and 5 g/L lincomycin exposure reduced the diversity and microbial composition of mice (p < 0.05). Furthermore, 1 and 5 g/L lincomycin reduced the relative concentrations of acetate, propionate, butyrate, valerate, isobutyric acid and isovaleric acid in the colon chyme of mice (p < 0.05). In addition, 5 g/L lincomycin exposure reduced the villus height, crypt depth, and relative expression of TLR2, TLR3, TLR4, IL-18, TNF-α, and p65 in the jejunum of mice (p < 0.05), while 1 g/L lincomycin exposure reduced the relative expression of TLR2, TLR3, TNF-α, and p65 (p < 0.05). Collectively, these results highlight the depletion effect of short-term lincomycin exposure on microbiota and the further regulatory effect on intestinal morphology and immunosuppression in infant mice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (J.Y.); (L.C.); Tel.: +86-10-62819432 (L.C.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
- Correspondence: (J.Y.); (L.C.); Tel.: +86-10-62819432 (L.C.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| |
Collapse
|
7
|
Schofield ZV, Wu MCL, Hansbro PM, Cooper MA, Woodruff TM. Acetate protects against intestinal ischemia‐reperfusion injury independent of its cognate free fatty acid 2 receptor. FASEB J 2020; 34:10418-10430. [DOI: 10.1096/fj.202000960r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zoe V. Schofield
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Mike C. L. Wu
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| | - Philip M. Hansbro
- Centre for Inflammation Centenary Institute Sydney NSW Australia
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Matthew A. Cooper
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
8
|
Liu J, Wei T, Wu X, Zhong H, Qiu W, Zheng Y. Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134724. [PMID: 31759701 DOI: 10.1016/j.scitotenv.2019.134724] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Trace levels of antibiotics are increasingly being detected in aquatic environment and their potential toxicity to aquatic organisms is concerning. Sulfamethoxazole (SMX), a veterinary sulfonamide widely used across the globe, exists ubiquitously in aquatic environment with concentrations up to micrograms per liter. This study aims to investigate the effects of environmentally relevant levels (0.1, 1, 10, 100 μg/L) of SMX on the health of zebrafish during early development. Our results show that SMX delays the hatchment of embryos and reduces the body length. A dose-response relationship of oxidative stress indicators including total-antioxidant capacity (T-AOC), inducible nitric oxide synthase (iNOS) and total nitric oxide synthase (TNOS), catalase (CAT) has been observed. Additionally, SMX up-regulates the gene expression of several key proinflammatory cytokines and their corresponding proteins including interleukin-1β (IL-1β), interferon-γ (IFN-γ) and interleukin-11 (IL-11) and the expression of genes including interleukin-6 (il-6), tumor necrosis factor-α (tnf-α). This indicates that early exposure of SMX may evoke inflammation response in healthy fish. Inhibition of lysozyme and recombination-activating genes (rags) suggests that SMX suppresses the ability of zebrafish to resist pathogen. The reduction of the expression of Toll-like receptors (TLRs) related genes and significant correlations between TLRs and other immune-related genes reveal that TLRs might be an immunoregulator of SMX for zebrafish embryos and larvae. The novelty of this study lies in that early exposure to environmental levels of SMX not only affects the growth and development of zebrafish larvae, but also triggers oxidative stress and inflammation, resulting in a reduction in host immune defense via TLRs in healthy fish.
Collapse
Affiliation(s)
- Jingyu Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianzi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanbin Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yan Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Zhang HY, Wang F, Chen X, Meng X, Feng C, Feng JX. Dual roles of commensal bacteria after intestinal ischemia and reperfusion. Pediatr Surg Int 2020; 36:81-91. [PMID: 31541279 DOI: 10.1007/s00383-019-04555-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE The roles of commensal bacteria after intestinal ischemia and reperfusion (IIR) are unclear. In current study, we aim to investigate the effects and underlying mechanisms of commensal bacteria in injury and epithelial restitution after IIR. METHODS Commensal gut bacteria were deleted by broad-spectrum antibiotics in mice. IIR was induced by clamping superior mesenteric artery. Intestinal injury, permeability, epithelial proliferation, and proinflammatory activity of mesenteric lymph were investigated. RESULTS Commensals deletion improved mice survival in the early phase, but failed to improve the overall survival at 96 h after IIR. Commensals deletion reduced proliferation of intestinal epithelial cells (IEC) and augmented proinflammatory activity of mesenteric lymph after IIR. Lipopolysaccharides (LPS) supplement promoted IEC proliferation and improved survival in mice with commensals deletion after IIR. LPS induced production of prostaglandin E2 (PGE2) in mucosa via toll-like receptor 4-NFκB-cyclooxygenase 2 pathway. PGE2 enhanced IEC proliferation in vivo, which was preceded by activation of Akt and extracellular signal-regulated kinase (ERK) 1/2. Blocking of EGFR, PI3K/Akt activity abolished LPS-induced IEC proliferation. CONCLUSIONS Commensal bacteria are essential for epithelial restitution after IIR, which enhance IEC proliferation via induction of PGE2.
Collapse
Affiliation(s)
- Hong-Yi Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fang Wang
- Department of Neurology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinrao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Chenzhao Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie-Xiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
10
|
Nadatani Y, Watanabe T, Shimada S, Otani K, Tanigawa T, Fujiwara Y. Microbiome and intestinal ischemia/reperfusion injury. J Clin Biochem Nutr 2018; 63:26-32. [PMID: 30087540 PMCID: PMC6064812 DOI: 10.3164/jcbn.17-137] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia/reperfusion injury is a severe disease associated with a high mortality. The mechanisms that cause ischemia/reperfusion injury are complex and many factors are involved in the injury formation process; however, the only available treatment is surgical intervention. Recent studies demonstrated that the intestinal microbiome plays a key role in intestinal ischemia/reperfusion injury and there are many factors associated with intestinal bacteria during the formation of the intestinal ischemia/reperfusion injury. Among the Toll-like receptors (TLR), TLR2, TLR4, and their adaptor protein, myeloid differentiation primary-response 88 (MyD88), have been reported to be involved in intestinal ischemia/reperfusion injury. Oxidative stress and nitric oxide are also associated with intestinal bacteria during the formation of the intestinal ischemia/reperfusion injury. This review focuses on our current understanding of the impact of the microbiome, including the roles of the TLRs, oxidative stress, and nitric oxide, on intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Sunao Shimada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
| |
Collapse
|
11
|
Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 2017; 40:1444-1456. [PMID: 28901374 PMCID: PMC5627889 DOI: 10.3892/ijmm.2017.3127] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Ferulic acid (FA) is a derivative of cinnamic acid. It is used in the treatment of heart head blood-vessel disease and exerts protective effects against hypoxia/ischemia-induced cell injury in the brain. This study investigated the potential neuroprotective effects of FA against ischemia/reperfusion (I/R)-induced brain injury in vivo and in vitro through hematoxylin and eosin (H&E) and Nissl staining assays, flow cytometry, Hoechst 33258 staining, quantitative PCR, western blot analysis and fluorescence microscopic analysis. In this study, models of cerebral I/R injury were established using rats and pheochromocytoma (PC-12) cells. The results revealed that treatment with FA significantly attenuated memory impairment, and reduced hippocampal neuronal apoptosis and oxidative stress in a dose-dependent manner. The results from in vitro experiments also indicated that FA protected the PC-12 cells against I/R-induced reactive oxygen species (ROS) generation and apoptosis by inhibiting apoptosis, Ca2+ influx, superoxide anion (O2-), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) production in a concentration-dependent manner. Moreover, FA inactivated the Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) pathway. MyD88 overexpression abolished the neuroprotective effects of FA. On the whole, we found that FA attenuated memory dysfunction and exerted protective effects against oxidative stress and apoptosis induced by I/R injury by inhibiting the TLR4/MyD88 signaling pathway. This study supports the view that FA may be a promising neuroprotective agent for use in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuanyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
12
|
Carr JS, King S, Dekaney CM. Depletion of enteric bacteria diminishes leukocyte infiltration following doxorubicin-induced small intestinal damage in mice. PLoS One 2017; 12:e0173429. [PMID: 28257503 PMCID: PMC5336284 DOI: 10.1371/journal.pone.0173429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS While enteric bacteria have been shown to play a critical role in other forms of intestinal damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin (Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage and, more specifically, in mediating chemokine expression and leukocyte infiltration following Doxo treatment. An understanding of this pathway may allow for development of intervention strategies to reduce chemotherapy-induced small intestinal damage. METHODS Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four weeks and then with Doxo. Jejunal tissues were collected at various time points following Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and macrophage and neutrophil number. In addition, RNA expression of inflammatory markers (TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR. RESULTS In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of macrophages and neutrophils. In contrast, while still positive for induction of apoptosis following Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in NoAbx mice nor the increased chemokine expression and leukocyte infiltration. CONCLUSION Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associated with an increase in immune-modulating chemokines and cells. Manipulation of enteric bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-induced small intestinal damage.
Collapse
Affiliation(s)
- Jacquelyn S. Carr
- Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephanie King
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, North Carolina, United States of America
| | - Christopher M. Dekaney
- Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
13
|
Carvalho JL, Britto A, de Oliveira APL, Castro-Faria-Neto H, Albertini R, Anatriello E, Aimbire F. Beneficial effect of low-level laser therapy in acute lung injury after i-I/R is dependent on the secretion of IL-10 and independent of the TLR/MyD88 signaling. Lasers Med Sci 2016; 32:305-315. [PMID: 27924419 DOI: 10.1007/s10103-016-2115-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023]
Abstract
The use of low-level laser for lung inflammation treatment has been evidenced in animal studies as well as clinical trials. The laser action mechanism seems to involve downregulation of neutrophil chemoattractants and transcription factors. Innate immune responses against microorganisms may be mediated by toll-like receptors (TLR). Intestinal ischemia and reperfusion (i-I/R) lead to bacterial product translocation, such as endotoxin, which consequently activates TLRs leading to intestinal and lung inflammation after gut trauma. Thus, the target of this study was to investigate the role of TLR activation in the laser (660 nm, 30 mW, 67.5 J/cm2, 0.375 mW/cm2, 5.4 J, 180 s, and spot size with 0.08 cm2) effect applied in contact with the skin on axillary lymph node in lung inflammation induced by i-I/R through a signaling adaptor protein known as myeloid differentiation factor 88 (MyD88). It is a quantitative, experimental, and laboratory research using the C57Bl/6 and MyD88-/- mice (n = 6 mice for experimental group). Statistical differences were evaluated by ANOVA and the Tukey-Kramer multiple comparisons test to determine differences among groups. In order to understand how the absence of MyD88 can interfere in the laser effect on lung inflammation, MyD88-/- mice were treated or not with laser and subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). In summary, the laser decreased the MPO activity and the lung vascular permeability, thickened the alveolar septa, reduced both the edema and the alveolar hemorrhage, as well as significantly decreased neutrophils infiltration in MyD88-deficient mice as well in wild-type mice. It noted a downregulation in chemokine IL-8 production as well as a cytokine IL-10 upregulation in these animals. The results also evidenced that in absence of IL-10, the laser effect is reversed. Based on these results, we suggest that the beneficial effect of laser in acute lung injury after i-I/R is dependent on the secretion of IL-10 and independent of the TLR/MyD88 signaling.
Collapse
Affiliation(s)
- J L Carvalho
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - A Britto
- Laboratory of Pulmonary Immunology and Exercise, University Nove de Julho - UNINOVE, São José dos Campos, Brazil
| | - A P Ligeiro de Oliveira
- Laboratory of Pulmonary Immunology and Exercise, University Nove de Julho - UNINOVE, São José dos Campos, Brazil
| | - H Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - R Albertini
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - E Anatriello
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - F Aimbire
- Department of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil. .,Federal University of São Paulo - UNIFESP, Institute of Science and Technology, Rua Talim, no. 330 - Vila Nair, CEP: 12231-280, São José dos Campos, SP, Brazil.
| |
Collapse
|
14
|
Sweeney T, Meredith H, Ryan M, Gath V, Thornton K, O'Doherty J. Effects of Ascophyllum nodosum supplementation on Campylobacter jejuni colonisation, performance and gut health following an experimental challenge in 10day old chicks. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Abstract
Gut barrier failure is often present in severe acute pancreatitis (SAP), and it increases the gut permeability, leads to translocation of bacteria or endotoxin, causes severe infection and multiple organ dysfunction syndrome, and worsens the course of the disease. The injury of gut barrier may result from the interactions among microcirculation disturbance, ischemia-reperfusion injury, excessive release of inflammatory mediators, apoptosis, flora imbalance and so on. The research on the mechanism of gut barrier failure caused by SAP is of important significance for the treatment of SAP.
Collapse
|
16
|
Stringa P, Lausada N, Romanin D, Portiansky E, Zanuzzi C, Machuca M, Gondolesi G, Rumbo M. Pretreatment Combination Reduces Remote Organ Damage Secondary to Intestinal Reperfusion Injury in Mice: Follow-up Study. Transplant Proc 2016; 48:210-6. [DOI: 10.1016/j.transproceed.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
|
17
|
Grasa L, Abecia L, Forcén R, Castro M, de Jalón JAG, Latorre E, Alcalde AI, Murillo MD. Antibiotic-Induced Depletion of Murine Microbiota Induces Mild Inflammation and Changes in Toll-Like Receptor Patterns and Intestinal Motility. MICROBIAL ECOLOGY 2015; 70:835-48. [PMID: 25896428 DOI: 10.1007/s00248-015-0613-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/02/2015] [Indexed: 05/21/2023]
Abstract
We examine the impact of changes in microbiota induced by antibiotics on intestinal motility, gut inflammatory response, and the function and expression of toll-like receptors (TLRs). Alterations in mice intestinal microbiota were induced by antibiotics and evaluated by q-PCR and DGGE analysis. Macroscopic and microscopic assessments of the intestine were performed in control and antibiotic-treated mice. TLR expression was determined in the intestine by q-RT-PCR. Fecal parameter measurements, intestinal transit, and muscle contractility studies were performed to evaluate alterations in intestinal motility. Antibiotics reduced the total bacterial quantity 1000-fold, and diversity was highly affected by treatment. Mice with microbiota depletion had less Peyer's patches, enlarged ceca, and mild gut inflammation. Treatment with antibiotics increased the expression of TLR4, TLR5, and TLR9 in the ileum and TLR3, TLR4, TLR6, TLR7, and TLR8 in the colon, and it reduced the expression of TLR2, TLR3, and TLR6 in the ileum and TLR2 and TLR9 in the colon. Antibiotics decreased fecal output, delayed the whole gut and colonic transit, and reduced the spontaneous contractions and the response to acetylcholine (ACh) in the ileum and colon. Activation of TLR4 by lipopolysaccharide (LPS) reverted the reduction of the spontaneous contractions induced by antibiotics in the ileum. Activation of TLR4 by LPS and TLR5 by flagellin reduced the response to ACh in the ileum in control mice. Our results confirm the role of the microbiota in the regulation of TLRs expression and shed light on the microbiota connection to motor intestinal alterations.
Collapse
Affiliation(s)
- Laura Grasa
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.
| | - Leticia Abecia
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Raquel Forcén
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Marta Castro
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | | | - Eva Latorre
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Ana Isabel Alcalde
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - María Divina Murillo
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| |
Collapse
|
18
|
Lin WB, Liang MY, Chen GX, Yang X, Qin H, Yao JP, Feng KN, Wu ZK. MicroRNA profiling of the intestine during hypothermic circulatory arrest in swine. World J Gastroenterol 2015; 21:2183-2190. [PMID: 25717255 PMCID: PMC4326157 DOI: 10.3748/wjg.v21.i7.2183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To perform a profiling analysis of changes in intestinal microRNA (miRNA) expression during hypothermic circulatory arrest (HCA).
METHODS: A total of eight piglets were randomly divided into HCA and sham operation (SO) groups. Under general anesthesia, swine in the HCA group were subjected to hypothermic cardiopulmonary bypass at 24 °C followed by 80 min of circulatory arrest, and the reperfusion lasted for 180 min after cross-clamp removal. The counterparts in the SO group were only subjected to median sternotomy. Histopathological analysis was used to detect mucosal injury, and Pick-and-Mix custom miRNA real-time polymerase chain reaction (PCR) panels containing 306 unique primer sets were utilized to assay unpooled intestinal samples harvested from the two groups.
RESULTS: The intestinal mucosa of the animals that were subjected to 24 °C HCA exhibited representative ischemic reperfusion injury of grade 2 or 3 according to the Chiu score. Such intestinal mucosal injuries, with the subepithelial space and epithelial layer lifting away from the lamina propria, were accompanied by shortened and irregular villi. On the contrary, the intestinal mucosa remained normal in the sham-operated animals. In total, twenty-five miRNAs were differentially expressed between the two groups (15 upregulated and 10 downregulated in the HCA group). Among these, eight miRNAs (miR-122, miR-221-5p, miR-31, miR-421-5p, miR-4333, miR-499-3p, miR-542 and let-7d-3p) were significantly dysregulated (four higher and four lower). The expression of miR-122 was significantly (5.37-fold) increased in the HCA group vs the SO group, indicating that it may play a key role in HCA-induced mucosal injury.
CONCLUSION: Exposure to HCA caused intestinal miRNA dysregulation and barrier dysfunction in swine. These altered miRNAs might be related to the protection or destruction of the intestinal barrier.
Collapse
|
19
|
Fan Y, Liu B. Expression of Toll-like receptors in the mucosa of patients with ulcerative colitis. Exp Ther Med 2015; 9:1455-1459. [PMID: 25780451 PMCID: PMC4353785 DOI: 10.3892/etm.2015.2258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
Patients with ulcerative colitis (UC) have a high risk of developing colorectal cancer. The aim of the present study was to evaluate the expression pattern of Toll-like receptors (TLRs) in the colonic mucosa of patients with UC. Colonic mucosal biopsy specimens were collected during colonoscopy from 30 patients with UC and 30 patients with normal findings as controls. The protein and mRNA expression levels of TLRs 1-4 and TLR9 were measured by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction analysis, respectively. The results showed that the mRNA and protein expression of TLR2, TLR4 and TLR9, but not TLR1 and TLR3, was significantly increased in the colonic mucosa of patients with UC compared with that in the normal controls. TLR (TLR2, TLR4 and TLR9) immunoreactivity was found in the cytoplasm of epithelial cells in the mucosa, and occasionally in the endothelium of small vessels of the stromal tissues. In conclusion, TLR2, TLR4 and TLR9 expression may be important in the biological pathogenesis of UC. TLR alterations in the innate response system may contribute to the pathogenesis of UC.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Bingrong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
20
|
Dead bacteria reverse antibiotic-induced host defense impairment in burns. J Am Coll Surg 2014; 219:606-19. [PMID: 25241233 DOI: 10.1016/j.jamcollsurg.2014.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Burn patients can incur high rates of hospital-acquired infections. The mechanism of antibiotic exposure on inducing infection vulnerability has not been determined. This study aimed to examine the effects of antibiotic treatment on host defense mechanisms. STUDY DESIGN First we treated C57/BL6 mice with combined antibiotic treatment after 30% to 35% total body surface area burn. Animals were sacrificed at 48 hours after sham or thermal injury treatment. Bacterial counts in intestinal lumen and mucosa were measured. Next, we treated animals with or without oral dead Escherichia coli or Staphylococcus aureus supplementation to stimulate Toll-like receptor in the intestinal mucosa. Toll-like receptor 4, antibacterial protein expression, nuclear factor (NF)-κB DNA-binding activity, and bacteria-killing activity in the intestinal mucosa; intestinal permeability; bacterial translocation to mesenteric lymph nodes; Klebsiella pneumoniae translocation; interleukin-6 in the blood; and phagocytic activity of alveolar macrophages, were assessed. RESULTS Thermal injury increased microflora and NF-κB DNA-binding activity of the intestine. Systemic antibiotic treatment decreased gut microflora and increased bacterial translocation to mesenteric lymph nodes, intestinal permeability, and interleukin-6 levels in the blood. Antibiotic treatment also decreased bacteria-killing activity in intestinal mucosa and phagocytic activity of alveolar macrophages. Oral dead E coli and S aureus supplementation induced NF-κB DNA-binding activity, Toll-like receptor 4, and antibacterial protein expression of the intestinal mucosa. CONCLUSIONS Taken together with the fact that dead bacteria reversed antibiotic-induced K pneumoniae translocation and intestinal and pulmonary defense impairment, we conclude that combined antibiotic treatment results in systemic host defense impairment in burns through the decrease in intestinal flora. We suggest that dead bacteria supplementation could induce nondefensin protein expression and reverse antibiotic-induced gut and lung defense impairment in burn patients.
Collapse
|
21
|
Toll-like receptor stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment. Infect Immun 2014; 82:1994-2005. [PMID: 24595141 DOI: 10.1128/iai.01578-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment.
Collapse
|
22
|
|
23
|
Shedding-induced gap formation contributes to gut barrier dysfunction in endotoxemia. J Trauma Acute Care Surg 2013; 74:203-13. [PMID: 23271096 DOI: 10.1097/ta.0b013e3182788083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The intestinal mucosa exhibits high turnover rates with a balance of shedding and the migration of epithelial cells to maintain gut barrier function. Systemic diseases such as sepsis and major thermal injury accelerate the rate of cell shedding, subsequent gap formation, and gut barrier dysfunction. However, the detailed changes of intestinal villi in barrier dysfunction have not been well described. METHODS In this study, intestinal barrier dysfunctions were induced through the injection of lipopolysaccharide (LPS) in C57BL/6 mice. Intravital images of the small intestine were observed with multiphoton microscopy for cellular dynamics analysis. The changes of epithelial cells shedding, gap formation, goblet cells, and intestinal leaks were observed, calculated, and analyzed. RESULTS Endotoxemia enhanced chromatin condensation, accelerated migration, and increased the shedding of intestinal epithelial cells compared with the control group. Furthermore, LPS-induced shedding resulted in gap formation and subsequent intestinal leaks. In total, 40% of intestinal leaks were through gaps, and 60% were through paracellular spaces. Although LPS injection significantly increased the leaks in gaps and paracellular spaces, it did not change the percentage of leaks in gaps and paracellular spaces compared with the control group. CONCLUSION We conclude that endotoxemia causes gut barrier dysfunction by increasing epithelium shedding, gaps, and intestinal leaks. However, the effect of the impairment of local barrier maintenance on the distribution of intestinal leaks in gaps and paracellular spaces is minimal.
Collapse
|
24
|
Watanabe T, Kobata A, Tanigawa T, Nadatani Y, Yamagami H, Watanabe K, Tominaga K, Fujiwara Y, Takeuchi K, Arakawa T. Activation of the MyD88 signaling pathway inhibits ischemia-reperfusion injury in the small intestine. Am J Physiol Gastrointest Liver Physiol 2012; 303:G324-34. [PMID: 22628037 DOI: 10.1152/ajpgi.00075.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates innate and adaptive immunity. Recent studies have shown that the activation of TLR-dependent signaling pathways plays important roles in the pathogenesis of ischemia-reperfusion (I/R) injuries in many organs. All TLRs, except TLR3, use a common adaptor protein, MyD88, to transduce activation signals. We investigated the role of MyD88 in I/R injury of the small intestine. MyD88 and cyclooxygenase-2 (COX-2) knockout and wild-type mice were subjected to intestinal I/R injury. I/R-induced small intestinal injury was characterized by infiltration of inflammatory cells, disruption of the mucosal epithelium, destruction of villi, and increases in myeloperoxidase activity and mRNA levels of TNF-α and the IL-8 homolog KC. MyD88 deficiency worsened the severity of I/R injury, as assessed using the histological grading system, measuring luminal contents of hemoglobin (a marker of intestinal bleeding), and counting apoptotic epithelial cells, while it inhibited the increase in mRNA expression of TNF-α and KC. I/R significantly enhanced COX-2 expression and increased PGE(2) concentration in the small intestine of wild-type mice, which were markedly inhibited by MyD88 deficiency. COX-2 knockout mice were also highly susceptible to intestinal I/R injury. Exogenous PGE(2) reduced the severity of injury in both MyD88 and COX-2 knockout mice to the level of wild-type mice. These findings suggest that the MyD88 signaling pathway may inhibit I/R injury in the small intestine by inducing COX-2 expression.
Collapse
Affiliation(s)
- Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mesenteric Lymph Return Is an Important Contributor to Vascular Hyporeactivity and Calcium Desensitization After Hemorrhagic Shock. Shock 2012; 38:186-95. [DOI: 10.1097/shk.0b013e31825f1c9b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Yoshiya K, Lapchak PH, Thai TH, Kannan L, Rani P, Dalle Lucca JJ, Tsokos GC. Depletion of gut commensal bacteria attenuates intestinal ischemia/reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1020-30. [PMID: 21903760 DOI: 10.1152/ajpgi.00239.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut commensal bacteria play important roles in the development and homeostasis of intestinal immunity. However, the role of gut commensals in intestinal ischemia/reperfusion (I/R) injury is unclear. To determine the roles of gut commensal bacteria in intestinal IR injury, we depleted gut microbiota with a broad-spectrum antibiotic cocktail and performed mesenteric I/R (M I/R). First, we confirmed that antibiotic treatment completely depleted gut commensal bacteria and diminished the size of secondary lymphoid tissues such as the Peyer's patches. We next found that antibiotic treatment attenuated intestinal injury following M I/R. Depletion of gut commensal bacteria reduced the expression of Toll-like receptor (TLR)2 and TLR4 in the intestine. Both are well-known receptors for gram-positive and -negative bacteria. Decreased expression of TLR2 and TLR4 led to the reduction of inflammatory mediators, such as TNF, IL-6, and cyclooxygenase-2. Intestinal I/R injury is initiated when natural antibodies recognize neo-antigens that are revealed on ischemic cells and activate the complement pathway. Thus we evaluated complement and immunoglobulin (Ig) deposition in the damaged intestine and found that antibiotic treatment decreased the deposition of both C3 and IgM. Interestingly, we also found that the deposition of IgA also increased in the intestine following M I/R compared with control mice and that antibiotic treatment decreased the deposition of IgA in the damaged intestine. These results suggest that depletion of gut commensal bacteria decreases B cells, Igs, and TLR expression in the intestine, inhibits complement activation, and attenuates intestinal inflammation and injury following M I/R.
Collapse
Affiliation(s)
- Kazuhisa Yoshiya
- Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
28
|
Fukuzawa N, Petro M, Baldwin WM, Gudkov AV, Fairchild RL. A TLR5 agonist inhibits acute renal ischemic failure. THE JOURNAL OF IMMUNOLOGY 2011; 187:3831-9. [PMID: 21890657 DOI: 10.4049/jimmunol.1003238] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reperfusion of ischemic organs induces a potent inflammatory response initiated by the generation of reactive oxygen species that directly damage tissue and promote leukocyte infiltration and activation that also mediate tissue injury. We recently found that radiation-induced tissue injury, which is caused by radiation-induced reactive oxygen species, is attenuated by administration of CBLB502, a pharmacologically optimized derivative of the TLR5 agonist flagellin. Therefore, we tested the ability of CBLB502 to attenuate injury in a murine model of acute ischemic renal failure. CBLB502 given 30 min before imposition of bilateral renal pedicle occlusion provided marked protection against the renal dysfunction and inflammation that follows reperfusion of ischemic kidneys, including marked decreases in leukocyte infiltration, proinflammatory cytokine production, and tubular injury. Importantly, CBLB502 given within 30 min after ischemic kidney reperfusion reproduced the protective effects of pretreatment with the TLR5 agonist, indicating a window following reperfusion in which CBLB502 administration abrogates acute renal ischemic failure. Bone marrow-reconstituted chimeras were used to show that the protective effects of CBLB502 could be delivered by intact MyD88 signaling on renal parenchymal cells. Consistent with this, Ab staining of kidney sections indicated that cells lining the renal vasculature expressed TLR5. Overall, these results indicate the use of TLR5 agonists as mitigators and protectants of acute renal ischemic failure.
Collapse
Affiliation(s)
- Nobuyuki Fukuzawa
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
29
|
Tumor necrosis factor is not associated with intestinal ischemia/reperfusion-induced lung inflammation. Shock 2011; 34:306-13. [PMID: 20160673 DOI: 10.1097/shk.0b013e3181cdc585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. Importantly, TNF-alpha antibody neutralization neither diminished neutrophil recruitment nor any of the cytokines and chemokines evaluated. In addition, the inflammatory response was not abrogated in TNF and TNF receptors 1 and 2-deficient mice. However, in view of the damage on the intestinal barrier upon intestinal I/R with systemic bacterial translocation, we asked whether Toll-like receptor (TLR) activation is driving the inflammatory response. In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.
Collapse
|
30
|
Eißler R, Schmaderer C, Rusai K, Kühne L, Sollinger D, Lahmer T, Witzke O, Lutz J, Heemann U, Baumann M. Hypertension augments cardiac Toll-like receptor 4 expression and activity. Hypertens Res 2011; 34:551-8. [DOI: 10.1038/hr.2010.270] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg 2010; 396:13-29. [PMID: 21088974 DOI: 10.1007/s00423-010-0727-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a challenging and life-threatening clinical problem with diverse causes. The delay in diagnosis and treatment contributes to the continued high in-hospital mortality rate. RESULTS Experimental research during the last decades could demonstrate that microcirculatory dysfunctions are determinants for the manifestation and propagation of intestinal I/R injury. Key features are nutritive perfusion failure, inflammatory cell response, mediator surge and breakdown of the epithelial barrier function with bacterial translocation, and development of a systemic inflammatory response. This review provides novel insight into the basic mechanisms of damaged intestinal microcirculation and covers therapeutic targets to attenuate intestinal I/R injury. CONCLUSION The opportunity now exists to apply this insight into the translation of experimental data to clinical trial-based research. Understanding the basic events triggered by intestinal I/R may offer new diagnostic and therapeutic options in order to achieve improved outcome of patients with intestinal I/R injury.
Collapse
|
32
|
Vasileiou I, Kostopanagiotou G, Katsargyris A, Klonaris C, Perrea D, Theocharis S. Toll-like receptors: a novel target for therapeutic intervention in intestinal and hepatic ischemia-reperfusion injury? Expert Opin Ther Targets 2010; 14:839-53. [PMID: 20568914 DOI: 10.1517/14728222.2010.500286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD Toll-like receptors (TLRs) are transmembrane proteins that act mainly as sensors of microbes, orchestrating an organism's defense against infections, while they sense also host tissue injury by recognizing products of dying cells. Ischemia-reperfusion injury (IRI) represents one of these tissue damage states in which TLR-mediated mechanisms might be implicated. AREAS COVERED IN THIS REVIEW The most recent data on TLR signaling and the latest knowledge regarding the involvement of TLRs in the pathogenesis and progression of intestinal and hepatic IRI are presented. The potential effectiveness of TLR-modulating therapy in intestinal and liver IRI is also analyzed. WHAT THE READER WILL GAIN A comprehensive summary of the data suggesting TLR involvement in intestinal and hepatic IRI. Knowledge required for developing TLR modulation strategies against intestinal and hepatic IRI. TAKE HOME MESSAGE TLRS play a significant role in both intestinal and hepatic IRI pathophysiology. Better understanding of TLR involvement in such processes may enable the invention of novel TLR-based therapies for IRI in the intestine and liver.
Collapse
Affiliation(s)
- Ioanna Vasileiou
- University of Athens, Medical School, Department of Forensic Medicine and Toxicology, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
33
|
Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia JDS, Ulevitch RJ, Hoffman HM, McKay DB. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6277-85. [PMID: 20962258 PMCID: PMC3020135 DOI: 10.4049/jimmunol.1002330] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cytoplasmic innate immune receptors are important therapeutic targets for diseases associated with overproduction of proinflammatory cytokines. One cytoplasmic receptor complex, the Nlrp3 inflammasome, responds to an extensive array of molecules associated with cellular stress. Under normal conditions, Nlrp3 is autorepressed, but in the presence of its ligands, it oligomerizes, recruits apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc), and triggers caspase 1 activation and the maturation of proinflammatory cytokines such as IL-1β and IL-18. Because ischemic tissue injury provides a potential source for Nlrp3 ligands, our study compared and contrasted the effects of renal ischemia in wild-type mice and mice deficient in components of the Nlrp3 inflammasome (Nlrp3(-/-) and Asc(-/-) mice). To examine the role of the inflammasome in renal ischemia-reperfusion injury (IRI) we also tested its downstream targets caspase 1, IL-1β, and IL-18. Both Nlrp3 and Asc were highly expressed in renal tubular epithelium of humans and mice, and the absence of Nlrp3, but not Asc or the downstream inflammasome targets, dramatically protected from kidney IRI. We conclude that Nlrp3 contributes to renal IRI by a direct effect on renal tubular epithelium and that this effect is independent of inflammasome-induced proinflammatory cytokine production.
Collapse
Affiliation(s)
- Alana A Shigeoka
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoffman SM, Wang H, Pope MR, Fleming SD. Helicobacter infection alters MyD88 and Trif signalling in response to intestinal ischaemia-reperfusion. Exp Physiol 2010; 96:104-13. [PMID: 21056969 DOI: 10.1113/expphysiol.2010.055426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ischaemia-reperfusion-induced intestinal injury requires both Toll-like receptor 4 (TLR4) signalling through myeloid differentiation primary response gene (88) (MyD88) and complement activation. As a common Gram-negative intestinal pathogen, Helicobacter hepaticus signals through TLR4 and upregulates the complement inhibitor, decay accelerating factor (DAF; CD55). Since ischaemia-reperfusion (IR) injury is complement dependent, we hypothesized that Helicobacter infection may alter IR-induced intestinal damage. Infection increased DAF transcription and subsequently decreased complement activation in response to IR without altering intestinal damage in wild-type mice. Ischaemia-reperfusion induced similar levels of DAF mRNA expression in uninfected wild-type, MyD88(-/-) or TIR-domain-containing adaptor-inducing interferon-β (Trif)-deficient mice. However, during infection, IR-induced DAF transcription was significantly attenuated in Trif-deficient mice. Likewise, IR-induced intestinal damage, complement component 3 deposition and prostaglandin E(2) production were attenuated in Helicobacter-infected, Trif-deficient but not MyD88(-/-) mice. While infection attenuated IR-induced cytokine production in wild-type and MyD88(-/-) mice, there was no further decrease in Trif-deficient mice. These data indicate distinct roles for MyD88 and Trif in IR-induced inflammation and suggest that chronic, undetected infections, such as Helicobacter, alter the use of the adaptor proteins to induce damage.
Collapse
Affiliation(s)
- Sara M Hoffman
- Kansas State University, Division of Biology, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
35
|
Commensal microflora induce host defense and decrease bacterial translocation in burn mice through toll-like receptor 4. J Biomed Sci 2010; 17:48. [PMID: 20540783 PMCID: PMC2901327 DOI: 10.1186/1423-0127-17-48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 06/12/2010] [Indexed: 12/13/2022] Open
Abstract
Background Major burn is associated with decreased gut barrier function and increased bacterial translocation (BT). This study is to investigate whether commensal microflora induce host defense and decrease BT in burn mice. Methods First, we treated Wild type (WT) mice with antibiotics in drinking water for 4 weeks to deplete gut commensal microflora. At week 3, drinking water was supplemented with lipopolysaccharide (LPS); a ligand for TLR4, to trigger TLRs in gut. The intestinal permeability, glutathione level, NF-κB DNA-binding activity, TLR4 expression of intestinal mucosa, BT to mesenteric lymph nodes (MLNs), and bacterial killing activity of peritoneal cells were measured after thermal injury. Second, lung of animals were harvested for MPO activity and TNFα mRNA expression assay. Third, WT animals were treated with oral antibiotics with or without LPS supplement after burn. At 48 hr after burn, TLR4 expression of intestinal mucosa and bacterial killing activity of cells were examined. Finally, bacterial killing activity and BT to MLNs after thermal injury in C3H/HeJ (TLR4 mutant) mice were measured. Results Burn induced BT to MLNs in WT mice. Commensal depletion decreased TLR4 expression as well as NF-κB activation of intestine, myeloperoxidase (MPO) activity as well as TNFα expression of lung, and bacterial killing activity of peritoneal cells. Oral LPS supplement markedly reduced 81% of burn-induced BT and increased TLR4 expression, MPO activity of lung, as well as bacterial killing activity of peritoneal cells. LPS supplement did not change BT or bacterial killing activity in C3H/HeJ mice. Conclusions Collectively, commensal microflora induce TLR4 expression of intestine and bacterial killing activity of inflammatory cells in burn. TLR4 ligand increases bacterial killing activity and decreases burn-induced BT. Taken together with the abolition of LPS effect in TLR4 mutant mice, we conclude that commensal microflora induce host defense and decrease bacterial translocation in burn mice through toll-like receptor 4.
Collapse
|
36
|
Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 2010; 48:1121-32. [PMID: 20083193 PMCID: PMC3423196 DOI: 10.1016/j.freeradbiomed.2010.01.006] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 01/01/2010] [Accepted: 01/05/2010] [Indexed: 02/06/2023]
Abstract
Injury caused by oxidative stress occurs in many clinical scenarios involving ischemia and reperfusion such as organ transplantation, hemorrhagic shock (HS), myocardial infarction, and cerebral vascular accidents. Activation of the immune system as a result of disturbances in the redox state of cells seems to contribute to tissue and organ damage in these conditions. The link between oxidative stress and inflammatory pathways is poorly understood. Recently, Toll-like receptors (TLRs) have been shown to mediate the inflammatory response seen in experimental ischemia and reperfusion (I/R). The TLR family of receptors involved in alerting the innate immune system of danger seems to be activated by damage-associated molecular pattern molecules (DAMPs) that are released during conditions of oxidative stress. In this review, we examine the role of TLRs in various experimental models of oxidative stress such as HS and I/R. We also report on potential DAMPs that may interact with TLRs in mediating injury. Finally, potential mechanisms by which reactive oxygen species from NADPH oxidase can signal the commencement of inflammatory pathways through TLRs are explored.
Collapse
Affiliation(s)
- Roop Gill
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
37
|
Local and remote tissue injury upon intestinal ischemia and reperfusion depends on the TLR/MyD88 signaling pathway. Med Microbiol Immunol 2009; 199:35-42. [DOI: 10.1007/s00430-009-0134-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Indexed: 01/01/2023]
|
38
|
Abstract
Ischemia-reperfusion (I/R) injuries are implicated in a large array of pathological conditions such as myocardial infarction, cerebral stroke, and hepatic, renal, and intestinal ischemia, as well as following cardiovascular and transplant surgeries. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as one of the main contributors to pathogen-induced inflammation and, more recently, injury-induced inflammation. Endogenous ligands such as low-molecular hyaluronic acid, fibronectin, heat shock protein 70, and heparin sulfate were all found to be cleaved in the inflamed tissue and to activate TLR2 and TLR4, initiating an inflammatory response even in the absence of pathogens and infiltrating immune cells. In this review, we discuss the contribution of TLR activation in hepatic, renal, cerebral, intestinal, and myocardial I/R injuries. A greater understanding of the role of TLRs in I/R injuries may aid in the development of specific TLR-targeted therapeutics to treat these conditions.
Collapse
|
39
|
Feitoza CQ, Semedo P, Gonçalves GM, Cenedeze MA, Pinheiro HS, Dos Santos OFP, Landgraf RG, Pacheco-Silva A, Câmara NOS. Modulation of inflammatory response by selective inhibition of cyclooxygenase-1 and cyclooxygenase-2 in acute kidney injury. Inflamm Res 2009; 59:167-75. [PMID: 19711010 DOI: 10.1007/s00011-009-0083-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE AND DESIGN This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. MATERIAL C57Bl/6 mice were used. TREATMENT Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). METHODS Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. RESULTS IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. CONCLUSIONS COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.
Collapse
Affiliation(s)
- Carla Q Feitoza
- Laboratory of Experimental and Clinical Immunology, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Moses T, Wagner L, Fleming SD. TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage. J Leukoc Biol 2009; 86:971-80. [PMID: 19564573 DOI: 10.1189/jlb.0708396] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenteric IR induces significant inflammation and immune-mediated mucosal damage. TLR4 is a critical receptor in the induction of the inflammatory response and plays a role in intestinal homeostasis. To determine the role of TLR4 in IR-induced epithelial damage, we performed IR studies using TLR4(lps-def) and TLR4(lps-n) mice and analyzed mucosal damage and inflammation. We found that the absence of TLR4 or TLR4-induced signaling attenuated local mucosal damage with significantly decreased cytokine and eicosanoid secretion including PGE2 production. Similar results were seen in MyD88-/- mice. Wild-type mice treated with NS-398 (a Cox-2 inhibitor) not only decreased PGE2 production but also attenuated tissue damage. In contrast, PGE2 was not sufficient to induce damage in the TLR4(lps-def) mice. Together, these data indicate that TLR4 stimulation of Cox-2 activation of PGE2 production is necessary but not sufficient for intestinal IR-induced damage and inflammation.
Collapse
Affiliation(s)
- Tiffany Moses
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
41
|
What's new in Shock, November 2008? Shock 2008; 30:485-6. [PMID: 18923300 DOI: 10.1097/shk.0b013e318189122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|