1
|
Yang G, Peng X, Wu Y, Li T, Liu L. Involvement of connexin 43 phosphorylation and gap junctional communication between smooth muscle cells in vasopressin-induced ROCK-dependent vasoconstriction after hemorrhagic shock. Am J Physiol Cell Physiol 2017; 313:C362-C370. [PMID: 28974518 DOI: 10.1152/ajpcell.00258.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
We examined the roles played by gap junctions (GJs) and the GJ channel protein connexin 43 (Cx43) in arginine vasopressin (AVP)-induced vasoconstriction after hemorrhagic shock and their relationship to Rho kinase (ROCK) and protein kinase C (PKC). The results showed that AVP induced an endothelium-independent contraction in rat superior mesenteric arteries (SMAs). Blocking the GJs significantly decreased the contractile response of SMAs and vascular smooth muscle cells (VSMCs) to AVP after shock and hypoxia. The selective Cx43-mimetic peptide inhibited the vascular contractile effect of AVP after shock and hypoxia. AVP restored hypoxia-induced decrease of Cx43 phosphorylation at Ser262 and gap junctional communication in VSMCs. Activation of RhoA with U-46619 increased the contractile effect of AVP. This effect was antagonized by the ROCK inhibitor Y27632 and the Cx43-mimetic peptide. In contrast, neither an agonist nor an inhibitor of PKC had significant effects on AVP-induced contraction after hemorrhagic shock. In addition, silencing of Cx43 with siRNA blocked the AVP-induced increase of ROCK activity in hypoxic VSMCs. In conclusion, AVP-mediated vascular contractile effects are endothelium and myoendothelial gap junction independent. Gap junctions between VSMCs, gap junctional communication, and Cx43 phosphorylation at Ser262 play important roles in the vascular effects of AVP. RhoA/ROCK, but not PKC, is involved in this process.
Collapse
Affiliation(s)
- Guangming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhang J, Yang GM, Zhu Y, Peng XY, Li T, Liu LM. Role of connexin 43 in vascular hyperpermeability and relationship to Rock1-MLC20 pathway in septic rats. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1323-32. [PMID: 26342084 DOI: 10.1152/ajplung.00016.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022] Open
Abstract
Connexin (Cx)43 has been shown to participate in several cardiovascular diseases. Increased vascular permeability is a common and severe complication in sepsis or septic shock. Whether or not Cx43 takes part in the regulation of vascular permeability in severe sepsis is not known, and the underlying mechanism has not been described. With cecal ligation and puncture-induced sepsis in rats and lipopolysaccharide (LPS)-treated vascular endothelial cells (VECs) from pulmonary veins, the role of Cx43 in increased vascular permeability and its relationship to the RhoA/Rock1 pathway were studied. It was shown that vascular permeability in the lungs, kidneys, and mesentery in sepsis rats and LPS-stimulated monolayer pulmonary vein VECs was significantly increased and positively correlated with the increased expression of Cx43 and Rock1 in these organs and cultured pulmonary vein VECs. The connexin inhibitor carbenoxolone (10 mg/kg iv) and the Rock1 inhibitor Y-27632 (2 mg/kg iv) alleviated the vascular leakage of lung, mesentery, and kidney in sepsis rats. Overexpressed Cx43 increased the phosphorylation of 20-kDa myosin light chain (MLC20) and the expression of Rock1 and increased the vascular permeability and decreased the transendothelial electrical resistance of pulmonary vein VECs. Cx43 RNA interference decreased the phosphorylation of MLC20 and the expression of Rock1 and decreased LPS-stimulated hyperpermeability of cultured pulmonary vein VECs. The Rock1 inhibitor Y-27632 alleviated LPS- and overexpressed Cx43-induced hyperpermeability of monolayer pulmonary vein VECs. This report shows that Cx43 participates in the regulation of vascular permeability in sepsis and that the mechanism is related to the Rock1-MLC20 phosphorylation pathway.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Guang-Ming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiao-Yong Peng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Li T, Yang GM, Zhu Y, Wu Y, Chen XY, Lan D, Tian KL, Liu LM. Diabetes and hyperlipidemia induce dysfunction of VSMCs: contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab 2015; 308:E257-69. [PMID: 25425000 DOI: 10.1152/ajpendo.00348.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vascular endothelial cell injury is considered to be the major factor inducing vascular complications in metabolic diseases and plays an important role in other organ damage. With diabetic and hyperlipidemic rats and cultured VSMCs, the present study was aimed at investigating whether the early damage of VSMCs during metabolic diseases plays a critical role in vascular dysfunction and the underlying mechanisms and would be a promising treatment target. With diabetic and hyperlipidemic rats and cultured VSMCs, the changes and relationships of vascular relaxation and contractile function to the vital organ damage and the underlying mechanisms were investigated; meanwhile, the protective and preventive effects of lowering blood lipid and glucose and inhibition of diabetes and hyperlipidemia-induced vascular hyperreactivity were observed. Diabetic and hyperlipidemic rats presented hyperreactivity in vascular contractile response in the early stages. Hyperglycemia and hyperlipidemia directly affected the contractile function of VSMCs. Early application of fasudil, a specific antagonist of Rho kinase, significantly alleviated diabetes and hyperlipidemia-induced organ damage by inhibiting vascular hyperreactivity. Diabetes and hyperlipidemia-induced inflammatory response could upregulate the expression of connexins and Rho kinase by selective downregulation of the expression of miR-10a, miR-139b, miR-206, and miR-222. These findings suggest that hyperglucose and lipid may directly impair VSMCs and induce vascular hyperreactivity in the early stages. Metabolic inflammation-induced changes in the miRNA-connexin/Rho kinase regulatory pathway are the main mechanism for vascular hyperreactivity and organ damage. Measures inhibiting vascular hyperreactivity are promising for the prevention of organ damage induced by metabolic diseases.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use
- Animals
- Cells, Cultured
- Connexins/genetics
- Connexins/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/prevention & control
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/prevention & control
- Drug Therapy, Combination
- Female
- Hyperlipidemias/drug therapy
- Hyperlipidemias/metabolism
- Hyperlipidemias/pathology
- Hyperlipidemias/physiopathology
- Hypoglycemic Agents/therapeutic use
- Hypolipidemic Agents/therapeutic use
- Male
- Metformin/therapeutic use
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Rats, Sprague-Dawley
- Renal Artery/drug effects
- Renal Artery/metabolism
- Renal Artery/pathology
- Renal Artery/physiopathology
- Simvastatin/therapeutic use
- Vasculitis/complications
- Vasculitis/etiology
- Vasculitis/prevention & control
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Guang-ming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiang-yun Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dan Lan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kun-lun Tian
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang-ming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
Liu L, Zhang J, Zhu Y, Xiao X, Peng X, Yang G, Zang J, Liu S, Li T. Beneficial effects of platelet-derived growth factor on hemorrhagic shock in rats and the underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 307:H1277-87. [PMID: 25172895 DOI: 10.1152/ajpheart.00006.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that local application of platelet-derived growth factor (PDGF) can be used for the treatment of acute and chronic wounds. We investigated if systemic application of PDGF has a protective effect on acute hemorrhagic shock in rats in the present study. Using hemorrhagic shock rats and isolated superior mesenteric arteries, the effects of PDGF-BB on hemodynamics, animal survival, and vascular reactivity as well as the roles of the gap junction proteins connexin (Cx)40 and Cx43, PKC, and Rho kinase were observed. PDGF-BB (1–15 μg/kg iv) significantly improved the hemodynamics and blood perfusion to vital organs (liver and kidney) as well as vascular reactivity and improved the animal survival in hemorrhagic shock rats. PDGF recovering shock-induced vascular hyporeactivity depended on the integrity of the endothelium and myoendothelial gap junction. Cx43 antisense oligodeoxynucleotide abolished these improving effects of PDGF, whereas Cx40 oligodeoxynucleotide did not. Further study indicated that PDGF increased the activity of Rho kinase and PKC as well as vascular Ca2+ sensitivity, whereas it did not interfere with the intracellular Ca2+ concentration in hypoxia-treated vascular smooth muscle cells. In conclusion, systemic application of PDGF-BB may exert beneficial effects on hemorrhagic shock, which are closely related to the improvement of vascular reactivity and hemodynamics. The improvement of PDGF-BB in vascular reactivity is vascular endothelium and myoendothelial gap junction dependent. Cx43, Rho kinase, and PKC play very important role in this process. These findings suggest that PDGF may be a potential measure to treat acute clinical critical diseases such as severe trauma, shock, and sepsis.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Angiogenesis Inducing Agents/therapeutic use
- Animals
- Becaplermin
- Calcium Signaling
- Connexin 43/genetics
- Connexin 43/metabolism
- Connexins/genetics
- Connexins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/drug effects
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Hemodynamics/drug effects
- Liver Circulation
- Mesenteric Artery, Superior/cytology
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase C/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Proto-Oncogene Proteins c-sis/therapeutic use
- Rats
- Rats, Wistar
- Renal Circulation
- Shock, Hemorrhagic/drug therapy
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/physiopathology
- rho-Associated Kinases/metabolism
- Gap Junction alpha-5 Protein
Collapse
|
5
|
Hernández-Guerra M, González-Méndez Y, de Ganzo ZA, Salido E, García-Pagán JC, Abrante B, Malagón AM, Bosch J, Quintero E. Role of gap junctions modulating hepatic vascular tone in cirrhosis. Liver Int 2014; 34:859-68. [PMID: 24350605 DOI: 10.1111/liv.12446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Gap junctions are formed by connexins (Cx), a family of proteins that couple endothelial and smooth muscle cells in systemic vessels. In this context, Cx allow the transmission of signals modulating vascular tone. Recently, vascular Cx have been observed in liver cells implicated in liver blood flow regulation. Here, we investigated the role of Cx in the regulation of intrahepatic vascular tone in cirrhosis. METHODS Livers of Sprague-Dawley control and cirrhotic (common bile duct ligation-CBDL and CCl4 ) rats were perfused, and concentration-effect curves in response to acetylcholine (ACh) precontracted with methoxamine were obtained in the presence of the specific Cx inhibitor 18-alpha-glycyrrhetinic acid or vehicle. Cx expression was assessed by immunofluorescence, western blot and reverse-transcription polymerase chain reaction in liver tissue, hepatic stellate cells, sinusoidal endothelial cells and hepatocytes isolated from control and cirrhotic rat livers. Cx protein expression was also determined in cirrhotic human tissue. RESULTS Gap junction blockade markedly attenuated relaxation of hepatic vasculature in response to ACh in control (maximal relaxation, -55 ± 10.5% vs. -95.3 ± 10% with vehicle; P < 0.01) and CBDL rats (50.9 ± 18.5% vs. -18.7 ± 5.5% with vehicle; P = 0.01). Livers from CBDL rats and patients with cirrhosis exhibited Cx overexpression. By contrast, CCl4 -cirrhotic rats did not show attenuated relaxation of hepatic vasculature after blockade and Cx expression was significantly lower than in controls. CONCLUSIONS Gap junctions may contribute to modulating portal pressure and intrahepatic vascular relaxation. Liver gap junctions may represent a new therapeutic target in cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Manuel Hernández-Guerra
- Liver Unit, University Hospital of the Canary Islands, Tenerife, Spain; Department of Internal Medicine, University of La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang J, Yang GM, Zhu Y, Peng XY, Liu LM, Li T. Bradykinin induces vascular contraction after hemorrhagic shock in rats. J Surg Res 2014; 193:334-43. [PMID: 25048290 DOI: 10.1016/j.jss.2014.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bradykinin (BK) has many biological effects in inflammation, allergy, and septic shock. Studies have shown that low doses of BK can induce vascular relaxation and high doses can induce vascular contraction in many pathophysiological conditions, but the role and mechanisms that high doses of BK have on vascular contraction in hemorrhagic shock are not clear. METHODS With hemorrhagic-shock rats and hypoxia-treated superior mesenteric artery (SMA), we investigated the role and mechanisms of high doses of BK-induced vascular contraction in hemorrhagic shock. RESULTS High doses of BK (500-50,000 ng/kg in vivo or 10(-10) to 10(-5) mol/L in vitro) dose dependently induced vascular contraction of SMA and increased the vascular calcium sensitivity in normal and hemorrhagic-shock rats. Less than 10(-10) mol/L of BK induced vascular dilation BK-induced increase of vascular contractile response and calcium sensitivity was reduced by denudation of the endothelium, 18α-glycyrrhetic acid (an inhibitor of myoendothelial gap junction) and connexin 43 antisense oligodeoxynucleotide. Further studies found that high concentrations of BK-induced vascular contraction in hemorrhagic shock was closely related to the activation of Rho A-Rho kinase pathway and Protein Kinase C (PKC) α and ε. CONCLUSIONS High doses of BK can induce vascular contraction in hemorrhagic shock condition, which is endothelium and myoendothelial gap junction dependent. Cx43-mediated activation of Rho A-Rho kinase and Protein Kinase C (PKC) pathway plays a very important role in this process. This finding provided a new angle of view to the biological role of BK in other pathophysiological conditions such as hemorrhagic shock or hypoxia.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Guang-ming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Xiao-yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Liang-ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China.
| |
Collapse
|
7
|
Liu L, Yang G, Zhu Y, Xu J, Zang J, Zhang J, Peng X, Lan D, Li T. Role of non-MLC20 phosphorylation pathway in the regulation of vascular reactivity during shock. J Surg Res 2014; 187:571-80. [DOI: 10.1016/j.jss.2013.10.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
8
|
Chen K, Fu C, Chen C, Liu L, Ren H, Han Y, Yang J, He D, Zhou L, Yang Z, Zhang L, Jose PA, Zeng C. Role of GRK4 in the regulation of arterial AT1 receptor in hypertension. Hypertension 2013; 63:289-96. [PMID: 24218433 DOI: 10.1161/hypertensionaha.113.01766] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-protein-coupled receptor kinase 4 (GRK4) gene variants, via impairment of renal dopamine receptor and enhancement of renin-angiotensin system functions, cause sodium retention and increase blood pressure. Whether GRK4 and the angiotensin type 1 receptor (AT(1)R) interact in the aorta is not known. We report that GRK4 is expressed in vascular smooth muscle cells of the aorta. Heterologous expression of the GRK4γ variant 142V in A10 cells increased AT(1)R protein expression and AT(1)R-mediated increase in intracellular calcium concentration. The increase in AT(1)R expression was related to an increase in AT(1)R mRNA expression via the NF-κB pathway. As compared with control, cells expressing GRK4γ 142V had greater NF-κB activity with more NF-κB bound to the AT(1)R promoter. The increased AT(1)R expression in cells expressing GRK4γ 142V was also associated with decreased AT(1)R degradation, which may be ascribed to lower AT(1)R phosphorylation. There was a direct interaction between GRK4γ and AT(1)R that was decreased by GRK4γ 142V. The regulation of AT(1)R expression by GRK4γ 142V in A10 cells was confirmed in GRK4γ 142V transgenic mice; AT(1)R expression was higher in the aorta of GRK4γ 142V transgenic mice than control GRK4γ wild-type mice. Angiotensin II-mediated vasoconstriction of the aorta was also higher in GRK4γ 142V than in wild-type transgenic mice. This study provides a mechanism by which GRK4, via regulation of arterial AT(1)R expression and function, participates in the pathogenesis of conduit vessel abnormalities in hypertension.
Collapse
Affiliation(s)
- Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitogen-activated protein kinases regulate vascular reactivity after hemorrhagic shock through myosin light chain phosphorylation pathway. J Trauma Acute Care Surg 2013; 74:1033-43. [PMID: 23511142 DOI: 10.1097/ta.0b013e31828586a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vascular hyporeactivity played an important role in many critical illness including shock or sepsis, but the mechanisms are incompletely understood. The objective of the present study was to investigate the roles of major mitogen-activated protein kinases (MAPKs extracellular signal-regulated kinase [ERK], p38 MAPK, and jun NH2-terminal kinase [JNK]) on vascular reactivity and the mechanisms. METHODS With superior mesenteric arteries from hemorrhagic shock rats, the role of p38 MAPK, ERK, and JNK in the regulation of vascular reactivity following shock and their relationship to myosin light chain (MLC20) phosphorylation-dependent pathway was observed. RESULTS ERK, p38 MAPK, and JNK activities in superior mesenteric arteries were increased at early shock and decreased at late shock. Stimulation of MAPKs with angiotensin II (AngII) increased the vascular reactivity, calcium sensitivity, and MLC20 phosphorylation. The increasing effect of AngII on vascular reactivity was antagonized by ERK, p38 MAPK, and JNK inhibitors, while the effect of AngII on calcium sensitivity was only blocked by ERK and p38 MAPK inhibitor, but not by JNK inhibitor. AngII increased the activity of protein kinase C-dependent phosphatase inhibitor of 17-kD (CPI17), integrin-linked kinase (ILK), and zipper-interacting protein kinase (ZIPK), The effect of AngII on CPI17 was blocked by ERK and p38 MAPK inhibitor, while the effect of AngII on ILK and ZIPK was only blocked by ERK inhibitor. CONCLUSION MAPKs participated in the regulation of vascular reactivity during shock. ERK and p38 MAPK is mainly through ILK, ZIPK, and CPI17-mediated MLC20 phosphorylation-dependent pathway, while JNK may be involved in the regulation of vascular reactivity by other mechanisms.
Collapse
|
10
|
|
11
|
Abstract
We used isolated superior mesenteric arteries (SMAs) from hemorrhagic-shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs; mimicking the shock state) to observe the effects of platelet-derived growth factor (PDGF; Rac1 stimulator) and NSC23766 (Rac1 antagonist) on vascular reactivity and the relationship with the Rho kinase-myosin light-chain phosphatase (MLCP) and p21-activated kinase (PAK)-myosin light-chain kinase (MLCK) signal pathway. The results indicated that the contractile responses of the SMAs and VSMCs were significantly increased at early shock or after transient hypoxia. NSC23766 (Rac1 antagonist) further increased, whereas PDGF (Rac1 stimulator) decreased the contractile responses of SMAs and VSMCs. In the late period of shock or prolonged hypoxia, the contractile responses of SMAs and VSMCs were significantly decreased; NSC23766 increased (whereas PDGF further decreased) the contractile response of the SMAs and VSMCs. Activation of Rac1 with PDGF significantly increased the activity of PAK and MLCP, and decreased Rho kinase and MLCK activity and 20-kDa myosin light-chain phosphorylation in VSMCs. The PAK inhibitor PAK-18 significantly antagonized the PDGF-induced decrease in MLCK activity, whereas the Rho kinase antagonist Y-27632 further enforced the PDGF-induced increase in MLCP activity. Simple fluid resuscitation did not improve but in combination with NSC23766 significantly improved vascular reactivity and animal survival at 24 hours. This suggested that Rac1 has an inhibitory effect on vasoreactivity after shock. Rac1-mediated regulation of vascular reactivity is mainly through activation of PAK, inhibition of MLCK and inhibition of Rho kinase, unpack the inhibition of Rho kinase to MLCP. Rac1 may be a potential target to treat vascular hyporeactivity in many critical conditions.
Collapse
|
12
|
Affiliation(s)
- Daniela Tirziu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8017, USA
| | | | | |
Collapse
|
13
|
What's new in shock, January 2009? Shock 2008; 31:1-2. [PMID: 19077876 DOI: 10.1097/shk.0b013e318190b19f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|