1
|
Lee J, Dey S, Rajvanshi PK, Merling RK, Teng R, Rogers HM, Noguchi CT. Neuronal nitric oxide synthase is required for erythropoietin stimulated erythropoiesis in mice. Front Cell Dev Biol 2023; 11:1144110. [PMID: 36895793 PMCID: PMC9988911 DOI: 10.3389/fcell.2023.1144110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Erythropoietin (EPO), produced in the kidney in a hypoxia responsive manner, is required for red blood cell production. In non-erythroid tissue, EPO increases endothelial cell production of nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) that regulates vascular tone to improve oxygen delivery. This contributes to EPO cardioprotective activity in mouse models. Nitric oxide treatment in mice shifts hematopoiesis toward the erythroid lineage, increases red blood cell production and total hemoglobin. In erythroid cells, nitric oxide can also be generated by hydroxyurea metabolism that may contribute to hydroxyurea induction of fetal hemoglobin. We find that during erythroid differentiation, EPO induces neuronal nitric oxide synthase (nNOS) and that neuronal nitric oxide synthase is required for normal erythropoietic response. Methods: Wild type (WT) mice and mice with targeted deletion of nNOS (nNOS-/-) and eNOS (eNOS-/-) were assessed for EPO stimulated erythropoietic response. Bone marrow erythropoietic activity was assessed in culture by EPO dependent erythroid colony assay and in vivo by bone marrow transplantation into recipient WT mice. Contribution of nNOS to EPO stimulated cell proliferation was assessed in EPO dependent erythroid cells and in primary human erythroid progenitor cell cultures. Results: EPO treatment increased hematocrit similarly in WT and eNOS-/- mice and showed a lower increase in hematocrit nNOS-/- mice. Erythroid colony assays from bone marrow cells were comparable in number from wild type, eNOS-/- and nNOS-/- mice at low EPO concentration. Colony number increased at high EPO concentration is seen only in cultures from bone marrow cells of wild type and eNOS-/- mice but not from nNOS-/- mice. Colony size with high EPO treatment also exhibited a marked increase in erythroid cultures from wild type and eNOS-/- mice but not from nNOS-/- mice. Bone marrow transplant from nNOS-/- mice into immunodeficient mice showed engraftment at comparable levels to WT bone marrow transplant. With EPO treatment, the increase in hematocrit was blunted in recipient mice that received with nNOS-/- donor marrow compared with recipient mice that received WT donor marrow. In erythroid cell cultures, addition of nNOS inhibitor resulted in decreased EPO dependent proliferation mediated in part by decreased EPO receptor expression, and decreased proliferation of hemin induced differentiating erythroid cells. Discussion: EPO treatment in mice and in corresponding cultures of bone marrow erythropoiesis suggest an intrinsic defect in erythropoietic response of nNOS-/- mice to high EPO stimulation. Transplantation of bone marrow from donor WT or nNOS-/- mice into recipient WT mice showed that EPO treatment post-transplant recapitulated the response of donor mice. Culture studies suggest nNOS regulation of EPO dependent erythroid cell proliferation, expression of EPO receptor and cell cycle associated genes, and AKT activation. These data provide evidence that nitric oxide modulates EPO dose dependent erythropoietic response.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen K Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Randall K Merling
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Ruifeng Teng
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heather M Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Simon FHP, Erhart P, Vcelar B, Scheuerle A, Schelzig H, Oberhuber A. Erythropoietin preconditioning improves clinical and histologic outcome in an acute spinal cord ischemia and reperfusion rabbit model. J Vasc Surg 2015; 64:1797-1804. [PMID: 26610640 DOI: 10.1016/j.jvs.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/03/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study examined effects and functional outcome of recombinant human erythropoietin (rhEPO) and carbamylated erythropoietin fusion protein (cEPO-FC) preconditioning in a rabbit model for spinal cord ischemia and resulting paraplegia. This model was chosen because only a small surgical effect is needed to cause paraplegia in rabbits, which facilitates postoperative observation of animals. METHODS Anesthetized but spontaneously breathing New Zealand White rabbits randomly received cEPO-FC (50 μg/kg; n = 8), rhEPO (5000 IU/kg; n = 10), or vehicle (control; n = 10) 30 minutes before and after infrarenal aortic clamping. Ideal clamping time of 22 minutes was identified from preceding clamping tests (15-25 minutes). Postoperative observation time was 96 hours. Spinal cord function was assessed by neurologic evaluation of hind limb motor function every 12 hours using a modified Tarlov score. Spinal cord tissue damage was evaluated after 96 hours using hematoxylin and eosin, elastica van Gieson, Nissl, Masson-Goldner, and hemosiderin staining. Plasma levels of cell senescence markers stathmin, chitinase 1/3, elongation factor 1-α were determined. RESULTS Rabbits that received rhEPO showed significant improvement of spontaneous lower limb movements until 36 hours of reperfusion and improved histologic scores upon examination of the lumbar spinal cord compared with the control group. In contrast, cEPO-FC treatment showed comparable outcome to the control group concerning movements of the lower limbs and histology. Senescence markers were elevated in the control group, but not in the treatment groups, except for chitinase 3 in the rhEPO group. Only stathmin showed no significant effect. Markers for senescence might increase after acute ischemic injury. Attenuation of senescence markers might not come alone from improvement of the spinal cord. CONCLUSIONS Preconditioning with rhEPO attenuates ischemia/reperfusion injury of the spinal cord, whereas the carbamylated derivative (cEPO-FC) showed no positive effect on spinal cord function.
Collapse
Affiliation(s)
| | - Philipp Erhart
- Department of Vascular and Endovascular Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, University of Düsseldorf, Düsseldorf, Germany
| | - Alexander Oberhuber
- Department of Vascular and Endovascular Surgery, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates. PLoS One 2015; 10:e0115083. [PMID: 25793991 PMCID: PMC4368546 DOI: 10.1371/journal.pone.0115083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
Background We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO) concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI). Methods Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO) was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age. Results Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55) Mental (OR 2.3; 95% CI 1.5-3.5) and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7) Development Indices (MDI, PDI), and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8). Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3), but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI. Conclusion hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly.
Collapse
|
4
|
Cruz Navarro J, Pillai S, Ponce LL, Van M, Goodman JC, Robertson CS. Endothelial nitric oxide synthase mediates the cerebrovascular effects of erythropoietin in traumatic brain injury. Front Immunol 2014; 5:494. [PMID: 25346735 PMCID: PMC4191322 DOI: 10.3389/fimmu.2014.00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Erythropoietin (Epo) improves post-traumatic cerebral blood flow (CBF), pressure autoregulation, and vascular reactivity to l-arginine. This study examines the dependence of these cerebral hemodynamic effects of Epo on nitric oxide generated by endothelial nitric oxide synthase (eNOS). Methods: Using laser Doppler flow imaging, CBF was monitored in wild-type (WT) and eNOS-deficient mice undergoing controlled cortical impact followed by administration of Epo (5000 U/kg) or normal saline. Results: Cerebral blood flow decreased in all groups post-injury with the greatest reductions occurring at the impact site. Epo administration resulted in significantly higher CBF in the peri-contusional sites in the WT mice [70.2 ± 3.35% in Epo-treated compared to 53 ± 3.3% of baseline in saline-treated mice (p < 0.0001)], but no effect was seen in the eNOS-deficient mice. No CBF differences were found at the core impact site where CBF dropped to 20–25% of baseline in all groups. Conclusion: These differences between eNOS-deficient and WT mice indicate that the Epo mediated improvement in CBF in traumatic brain injury is eNOS dependent.
Collapse
Affiliation(s)
| | - Shibu Pillai
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX , USA
| | - Lucido L Ponce
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX , USA
| | - Mai Van
- Department of Neurosurgery, Baylor College of Medicine , Houston, TX , USA
| | - Jerry Clay Goodman
- Department of Pathology and Immunology, Baylor College of Medicine , Houston, TX , USA ; Department of Neurology, Baylor College of Medicine , Houston, TX , USA
| | | |
Collapse
|
5
|
Bartnicki P, Kowalczyk M, Rysz J. The influence of the pleiotropic action of erythropoietin and its derivatives on nephroprotection. Med Sci Monit 2013; 19:599-605. [PMID: 23872600 PMCID: PMC3724571 DOI: 10.12659/msm.889023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/02/2013] [Indexed: 12/26/2022] Open
Abstract
Erythropoietin (EPO) is traditionally described as a hematopoietic cytokine or growth hormone regulating proliferation, differentiation, and survival of erythroid progenitors. The use of EPO in patients with chronic kidney disease (CKD) was a milestone achievement in the treatment of anemia. However, EPO involves some degree of risk, which increases with increasing hemoglobin levels. A growing number of studies have assessed the renoprotective effects of EPO in acute kidney injury (AKI) or CKD. Analysis of the biological effects of erythropoietin and pathophysiology of CKD in these studies suggests that treatment with erythropoiesis-stimulating agents (ESAs) may exert renoprotection by pleiotropic actions on several targets and directly or indirectly slow the progression of CKD. By reducing ischemia and oxidative stress or strengthening anti-apoptotic processes, EPO may prevent the development of interstitial fibrosis and the destruction of tubular cells. Furthermore, it could have a direct protective impact on the integrity of the interstitial capillary network through its effects on endothelial cells and promotion of vascular repair, or modulate inflammation response. Thus, it is biologically plausible to suggest that correcting anemia with ESAs could slow the progression of CKD. The aim of this article is to discuss these possible renoprotection mechanisms and provide a comprehensive overview of erythropoietin and its derivatives.
Collapse
Affiliation(s)
- Piotr Bartnicki
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Łódź, Łódź, Poland.
| | | | | |
Collapse
|
6
|
Pulman KGT, Smith M, Mengozzi M, Ghezzi P, Dilley A. The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model. Neuroscience 2012; 233:174-83. [PMID: 23262243 DOI: 10.1016/j.neuroscience.2012.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/14/2012] [Accepted: 12/11/2012] [Indexed: 01/28/2023]
Abstract
Studies on the neuritis model suggest that in many patients with neuropathic pain, symptoms may be due to nerve inflammation rather than frank nerve injury. Treatments for these patients are often ineffective. The neuroprotective and hematopoietic agent erythropoietin (EPO) has been shown to reverse pain behaviors in nerve injury models and therefore may be of therapeutic benefit. However, EPO can cause thrombosis. ARA290 is an analog of EPO that has the neuroprotective activities of EPO without stimulating hematopoiesis. The present study has examined the effects of ARA290 on pain behavior in the neuritis model. Following neuritis induction, 30 or 120 μg/kg ARA290 or saline vehicle was injected intraperitoneally into rats daily from day 1 post surgery. Animals were assessed for mechanical allodynia and heat hyperalgesia. Levels of the cytokine tumor necrosis factor-α (TNF-α) and chemokine (CC motif) ligand 2 (CCL2) mRNA were also assessed using polymerase chain reaction. Vehicle-treated neuritis animals (n=20) developed signs of mechanical allodynia and heat hyperalgesia that reached a maximum on day 4 and 3 of testing, respectively. Treatment with either 30 (n=11) or 120 μg/kg ARA290 (n=9) prevented the development of mechanical allodynia. However, ARA290 did not significantly affect heat hyperalgesia. There was no significant difference between the effects of each drug dose (p<0.05, unpaired t test comparing area under the curve for mechanical allodynia). The levels of CCL2 and TNF-α mRNA in the nerve and Gelfoam were not significantly different following 120 μg/kg ARA290 treatment (n=3-7) compared to vehicle-treated animals (n=3-7; p=0.24; unpaired t tests). In summary, ARA290 may be beneficial in the treatment of neuropathic pain symptoms where signs of nerve injury are absent on clinical assessment. The mechanisms of action do not appear to involve the inhibition of TNF-α or CCL2 production.
Collapse
Affiliation(s)
- K G T Pulman
- Division of Clinical and Laboratory Investigation, Brighton and Sussex Medical School, Medical Research Building, University of Sussex, Falmer, Brighton BN1 9PS, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
EPO reverses defective wound repair in hypercholesterolaemic mice by increasing functional angiogenesis. J Plast Reconstr Aesthet Surg 2012; 65:1559-68. [DOI: 10.1016/j.bjps.2012.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/17/2012] [Accepted: 05/06/2012] [Indexed: 11/24/2022]
|
8
|
Contaldo C, Högger DC, Khorrami Borozadi M, Stotz M, Platz U, Forster N, Lindenblatt N, Giovanoli P. Radial pressure waves mediate apoptosis and functional angiogenesis during wound repair in ApoE deficient mice. Microvasc Res 2012; 84:24-33. [DOI: 10.1016/j.mvr.2012.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 12/22/2022]
|
9
|
Sorg H, Harder Y, Krueger C, Reimers K, Vogt PM. The nonhematopoietic effects of erythropoietin in skin regeneration and repair: from basic research to clinical use. Med Res Rev 2012; 33:637-64. [PMID: 22430919 DOI: 10.1002/med.21259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Erythropoietin (EPO) is the main regulator of red blood cell production but there exists also a variety of nonhematopoietic properties. More recent data show that EPO is also associated with the protection of tissues suffering from ischemia and reperfusion injury as well as with improved regeneration in various organ systems, in particular the skin. This review highlights the mechanisms of EPO in the different stages of wound healing and the reparative processes in the skin emphasizing pathophysiological mechanisms and potential clinical applications. There is clear evidence that EPO effectively influences all wound-healing phases in a dose-dependent manner. This includes inflammation, tissue, and blood vessel formation as well as the remodeling of the wound. The molecular mechanism is predominantly based on an increased expression of the endothelial and inducible nitric oxide (NO) synthase with a consecutive rapid supply of NO as well as an increased content of vascular endothelial growth factor (VEGF) in the wound. The improved understanding of the functions and regulatory mechanisms of EPO in the context of wound-healing problems and ischemia/reperfusion injury, especially during flap surgery, may lead to new considerations of this growth hormone for its regular clinical application in patients.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
10
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
11
|
What's New in SHOCK, March 2011? Shock 2011; 35:217-9. [PMID: 21326074 DOI: 10.1097/shk.0b013e31820ae8aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|