1
|
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants (Basel) 2023; 12:1815. [PMID: 37891894 PMCID: PMC10604248 DOI: 10.3390/antiox12101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The antioxidant activity of essential oils (EOs) is an important and frequently studied property, yet it is not sufficiently understood in terms of the contribution of EOs mixtures' constituents and biological properties. In this study, a series of 61 commercial EOs were first evaluated as antioxidants in vitro, following as closely as possible the cellular pathways of reactive oxygen species (ROS) generation. Hence, EOs were assessed for the ability either to chelate metal ions, thus interfering with ROS generation within the respiratory chain, or to neutralize 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and lipid peroxide radicals (LOO•), thereby halting lipid peroxidation, as well as to neutralize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radicals (ABTS•+) and hydroxyl radicals (OH•), thereby preventing the ROS species from damaging DNA nucleotides. Showing noteworthy potencies to neutralize all of the radicals at the ng/mL level, the active EOs were also characterized as protectors of DNA double strands from damage induced by peroxyl radicals (ROO•), emerging from 2,2'-azobis-2-methyl-propanimidamide (AAPH) as a source, and OH•, indicating some genome protectivity and antigenotoxicity effectiveness in vitro. The chemical compositions of the EOs associated with the obtained activities were then analyzed by means of machine learning (ML) classification algorithms to generate quantitative composition-activity relationships (QCARs) models (models published in the AI4EssOil database available online). The QCARs models enabled us to highlight the key features (EOSs' chemical compounds) for exerting the redox potencies and to define the partial dependencies of the features, viz. percentages in the mixture required to exert a given potency. The ML-based models explained either the positive or negative contribution of the most important chemical components: limonene, linalool, carvacrol, eucalyptol, α-pinene, thymol, caryophyllene, p-cymene, eugenol, and chrysanthone. Finally, the most potent EOs in vitro, Ylang-ylang (Cananga odorata (Lam.)) and Ceylon cinnamon peel (Cinnamomum verum J. Presl), were promptly administered in vivo to evaluate the rescue ability against redox damage caused by CCl4, thereby verifying their antioxidant and antigenotoxic properties either in the liver or in the kidney.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| |
Collapse
|
2
|
Kouki A, Ferjani W, Ghanem-Boughanmi N, Ben-Attia M, Dang PMC, Souli A, El-Benna J. The NADPH Oxidase Inhibitors Apocynin and Diphenyleneiodonium Protect Rats from LPS-Induced Pulmonary Inflammation. Antioxidants (Basel) 2023; 12:antiox12030770. [PMID: 36979018 PMCID: PMC10045801 DOI: 10.3390/antiox12030770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation is the body's response to insults, for instance, lung inflammation is generally caused by pathogens or by exposure to pollutants, irritants and toxins. This process involves many inflammatory cells such as epithelial cells, monocytes, macrophages and neutrophils. These cells produce and release inflammatory mediators such as pro-inflammatory cytokines, lipids and reactive oxygen species (ROS). Lung epithelial cells and phagocytes (monocytes, macrophages and neutrophils) produce ROS mainly by the NADPH oxidase NOX1 and NOX2, respectively. The aim of this study was to investigate the effects of two NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI), on lipopolysaccharide (LPS)-induced lung inflammation in rats. Our results showed that apocynin and DPI attenuated the LPS-induced morphological and histological alterations of the lung, reduced edema and decreased lung permeability. The evaluation of oxidative stress markers in lung homogenates showed that apocynin and DPI inhibited LPS-induced NADPH oxidase activity, and restored superoxide dismutase (SOD) and catalase activity in the lung resulting in the reduction in LPS-induced protein and lipid oxidation. Additionally, apocynin and DPI decreased LPS-induced MPO activity in bronchoalveolar liquid and lung homogenates, TNF-α and IL-1β in rat plasma. NADPH oxidase inhibition could be a new therapeutic strategy for the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Ahmed Kouki
- Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, F-75018 Paris, France
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Wafa Ferjani
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Néziha Ghanem-Boughanmi
- Unité des Risques Liés aux Stress Environnementaux (UR17/ES20), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, F-75018 Paris, France
| | - Abdelaziz Souli
- Laboratoire de Biosurveillance de l'Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, F-75018 Paris, France
| |
Collapse
|
3
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
4
|
Boshtam M, Kouhpayeh S, Amini F, Azizi Y, Najaflu M, Shariati L, Khanahmad H. Anti-inflammatory effects of apocynin: a narrative review of the evidence. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1990136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied physiology research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Tayman C, Çakır U, Akduman H, Karabulut Ş, Çağlayan M. The therapeutic effect of Apocynin against hyperoxy and Inflammation-Induced lung injury. Int Immunopharmacol 2021; 101:108190. [PMID: 34607228 DOI: 10.1016/j.intimp.2021.108190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
Lung damage due to hyperoxia and inflammation are important causes of bronchopulmonary dysplasia (BPD). We aimed to investigate the beneficial effects of Apocynin (Apo) on rat pups exposed to hyperoxia and inflammation. Forty-eight rat pups were randomly divided into 3 groups as hyperoxia (95% O2) + lipopolysaccharide (LPS), hyperoxia + LPS + Apo treated and control (21% O2). Rat pups in the Apo group received Apo at a daily dose of 40 mg/kg. Histopathological (Hematoxylin-Eosin, Masson trichrome), immunochemical (surfactant B and C protein staining) evaluations and biochemical studies incluiding, total antioxidant status (TAS), total oxidant status (TOS), OSI (oxidant stress index), AOPP (advanced protein degradation product), Lipid hydroperoxide (LPO), 8-OHdG, NADPH oxidase activity (NOX), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF- α), interleukin-1 beta (IL-1β), IL-18, IL-6, caspase-1 and 3, nuclear factor erythroid 2-related factor 2 (NFR2), Nod-like receptor pyrin domain-containing 3 (NLRP3) activities were studied. After Apo treatment, AOPP, LPO, 8-OHdG, NOX, TOS, OSI levels decreased; SOD, CAT, GSH and TAS levels increased (P < 0.05). Apo reduced inflammatory cell infiltration and proinflammatory cytokines with reduction in NLRP3 inflammasome in addition to increased Nrf2 levels. Moreover, caspase-1 and 3 levels decreased with Apo (P < 0.05). Apo was found to provide preventive and therapeutic effects by reducing oxidant stress, blocking inflammation and increasing antioxidant status. Beyond anti-oxidative effects, Apo also have anti-inflammatory effects by suppressing NLRP3 inflammasome activation and inducing Nrf2 as well. Therefore, Apo might be a potential option in the treatment of BPD.
Collapse
Affiliation(s)
- Cuneyt Tayman
- Department of Neonatology, University of Health Sciences, Ankara City Hospital, Cankaya, Ankara, Turkey.
| | - Ufuk Çakır
- Department of Neonatology, University of Health Sciences, Ankara City Hospital, Cankaya, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, Dr Sami Ulus Gynecology Obstetrics and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Şefika Karabulut
- Department of Medical Microbiology, Gulhane Institue of Health of Science, University of Health Science, Ankara, Turkey
| | - Murat Çağlayan
- Department of Medical Biochemistry, University of Health Sciences, Dışkapı yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Tjahjono Y, Karnati S, Foe K, Anggara E, Gunawan YN, Wijaya H, Steven, Suyono H, Esar SY, Hadinugroho W, Wihadmadyatami H, Ergün S, Widharna RM, Caroline. Anti-inflammatory activity of 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid in LPS-induced rat model. Prostaglandins Other Lipid Mediat 2021; 154:106549. [PMID: 33831580 DOI: 10.1016/j.prostaglandins.2021.106549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Salicylic acid derivate is very popular for its activity to suppress pain, fever, and inflammation. One of its derivatives is acetylsalicylic acid (ASA) which has been reported repeatedly that, as a non-steroidal anti-inflammatory drug (NSAID), it has a cardioprotective effect. Although ASA has various advantages, several studies have reported that it may induce severe peptic ulcer disease. We recently synthesized a new compound derived from salicylic acid, namely 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid (3-CH2Cl) which still has the benefit of acetylsalicylic acid as an analgesic and antiplatelet, but lacks its harmful side effects (Caroline et al., 2019). In addition, in silico studies of 3-CH2Cl showed a higher affinity towards protein receptor cyclooxygenase-2 (COX-2; PDB: 5F1A) than ASA. We hypothesized that 3-CH2Cl inhibits the COX-2 activity which could presumably decrease the inflammatory responses. However, no knowledge is available on the anti-inflammatory response and molecular signaling of this new compound. Hence, in this study, we investigated the potential functional relevance of 3-CH2Cl in regulating the inflammatory response in lipopolysaccharide (LPS)-induced rats. The results of this study show that this compound could significantly reduce the inflammatory parameter in LPS-induced rats. MATERIAL AND METHODS Rats were induced with LPS of 0.5 mg/kg bw intravenously, prior oral administration with vehicle (3% Pulvis Gummi Arabicum / PGA), 500 mg/60 kg body weight (bw; rat dosage converted to human) of 3-CH2Cl and ASA. The inflammatory parameters such as changes in the temperature of septic shock, cardiac blood plasma concentrations of IL-1β and TNF-α (ELISA), blood inflammation parameters, white blood cell concentrations, and lung histopathology were observed. Meanwhile, the stability of 3-CH2Cl powder was evaluated. RESULT After the administration of 500 mg/60 kg bw of 3-CH2Cl (rat dosage converted to human) to LPS-induced rats, we observed a significant reduction of both TNF-α (5.70+/-1.04 × 103 pg/mL, p=<0.001) and IL-1β (2.32+/-0.28 × 103 pg/mL, p=<0.001) cardiac blood plasma concentrations. Besides, we found a reduction of white blood cell concentration and the severity of lung injury in the 3-CH2Cl group compared to the LPS-induced rat group. Additionally, this compound maintained the rat body temperature within normal limits during inflammation, preventing the rats to undergo septic shock, characterized by hypothermic (t = 120 min.) or hyperthermic (t = 360 min) conditions. Furthermore, 3-CH2Cl was found to be stable until 3 years at 25°C with a relative humidity of 75 ± 5%. CONCLUSION 3-CH2Cl compound inhibited inflammation in the LPS-induced inflammation response model in rats, hypothetically through binding to COX-2, and presumably inhibited LPS-induced NF-κβ signaling pathways. This study could be used as a preliminary hint to investigate the target molecular pathways of 3-CH2Cl as a novel and less toxic therapeutical agent in alleviating the COX-related inflammatory diseases, and most importantly to support the planning and development of clinical trial.
Collapse
Affiliation(s)
- Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Kuncoro Foe
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Efendi Anggara
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Yongky Novandi Gunawan
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Hendy Wijaya
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Steven
- Faculty of Medicine, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Handi Suyono
- Faculty of Medicine, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Wuryanto Hadinugroho
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Hevi Wihadmadyatami
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna 2, Sleman, 55281, Yogyakarta, Indonesia
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ratna Megawati Widharna
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Caroline
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia.
| |
Collapse
|
7
|
Puri G, Naura AS. Critical role of mitochondrial oxidative stress in acid aspiration induced ALI in mice. Toxicol Mech Methods 2020; 30:266-274. [DOI: 10.1080/15376516.2019.1710888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gayatri Puri
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S. Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Franz N, Dieteren S, Köhler K, Mörs K, Sturm R, Marzi I, Perl M, Relja B, Wagner N. Alcohol Binge Reduces Systemic Leukocyte Activation and Pulmonary PMN Infiltration After Blunt Chest Trauma and Hemorrhagic Shock. Inflammation 2018; 42:690-701. [DOI: 10.1007/s10753-018-0927-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Fayed MR, El-Naga RN, Akool ES, El-Demerdash E. The potential antifibrotic impact of apocynin and alpha-lipoic acid in concanavalin A-induced liver fibrosis in rats: Role of NADPH oxidases 1 and 4. Drug Discov Ther 2018; 12:58-67. [DOI: 10.5582/ddt.2017.01065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mostafa R. Fayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Kafrelsheikh University
| | - Reem N. El-Naga
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University
| | - El-Sayed Akool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, El-Azhar University
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University
| |
Collapse
|
10
|
DJC Suppresses Advanced Glycation End Products-Induced JAK-STAT Signaling and ROS in Mesangial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28630633 PMCID: PMC5467335 DOI: 10.1155/2017/2942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antidiabetic properties and anti-inflammatory effects of Danzhi Jiangtang Capsules (DJC) have been demonstrated in clinical and laboratory experiments. In this study, we explored whether DJC can ameliorate advanced glycation end products- (AGEs-) mediated cell injury and the precise mechanisms of DJC in treating diabetic nephropathy (DN). Western blot analysis was employed to assess the expressions of iNOS, COX2, and SOCS and the phosphorylation of JAK2, STAT1, and STAT3 in glomerular mesangial cells (GMCs) after treatment with DJC. TNF-α, IL-6, and MCP-1 were determined using double-antibody sandwich ELISA. ROS and NADPH oxidase activity were measured by DCFH-DA assay and lucigenin-enhanced chemiluminescence, respectively. DJC significantly reversed the AGEs-induced expression of COX2 and iNOS. Moreover, DJC inhibited the AGEs-induced JAK2-STAT1/STAT3 activation, resulting in the inhibition of inflammatory cytokines such as IL-6, MCP-1, and TNF-α in a concentration-dependent manner. The ability of DJC to suppress STAT activation was also verified by the observation that DJC significantly increased the SOCS3 protein level. DJC reversed the AGEs-induced accumulation of ROS and NADPH oxidase activity, thus confirming that DJC possesses antioxidant activity. The results suggest that the anti-inflammatory effects of DJC in GMCs may be due to its ability to suppress the JAK2-STAT1/STAT3 cascades and reduce ROS production.
Collapse
|
11
|
Jantaree P, Lirdprapamongkol K, Kaewsri W, Thongsornkleeb C, Choowongkomon K, Atjanasuppat K, Ruchirawat S, Svasti J. Homodimers of Vanillin and Apocynin Decrease the Metastatic Potential of Human Cancer Cells by Inhibiting the FAK/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2299-2306. [PMID: 28248106 DOI: 10.1021/acs.jafc.6b05697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The spread of cancer cells to distant organs, in a process called metastasis, is the main factor that contributes to most death in cancer patients. Vanillin, the vanilla flavoring agent, has been shown to suppress metastasis in a mouse model. Here, we evaluated the antimetastatic potential of the food additive divanillin, the homodimer of vanillin, and their structurally related compounds, apocynin and diapocynin, in hepatocellular carcinoma cells. The Transwell invasion assay showed that the dimeric forms exhibited a potency higher than those of vanillin and apocynin in inhibiting invasion, with IC50 values of 23.3 ± 7.4 to 41.3 ± 4.2 μM for the dimers, which are 26-34-fold lower than IC50 values of vanillin and apocynin (p < 0.05). Both monomeric and dimeric forms target regulation of the invasion process by inhibiting phosphorylation of FAK and Akt. Molecular docking studies suggested that the dimers should bind more tightly than vanillin and apocynin to the Y397 pocket of the FAK FERM domain. Thus, the food additive divanillin has antimetastatic potential greater than that of the flavoring agent vanillin.
Collapse
Affiliation(s)
- Phatcharida Jantaree
- Chulabhorn Graduate Institute , Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , Bangkok 10400, Thailand
| | - Kriengsak Lirdprapamongkol
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , Bangkok 10400, Thailand
| | - Wilailak Kaewsri
- Chulabhorn Graduate Institute , Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , Bangkok 10400, Thailand
| | | | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University , Bangkok 10903, Thailand
| | | | - Somsak Ruchirawat
- Chulabhorn Graduate Institute , Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education , Bangkok 10400, Thailand
| | | |
Collapse
|
12
|
Liu X, Yang T, Sun T, Shao K. SIRT1‑mediated regulation of oxidative stress induced by Pseudomonas aeruginosa lipopolysaccharides in human alveolar epithelial cells. Mol Med Rep 2016; 15:813-818. [PMID: 28000862 DOI: 10.3892/mmr.2016.6045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 10/19/2016] [Indexed: 11/05/2022] Open
Abstract
Sirtuin1 (SIRT1) is an NAD+‑dependent deacetylase that exhibits multiple biological functions, including cell differentiation inhibition, transcription regulation, cell cycle regulation and anti‑apoptosis. Lipopolysaccharides (LPS) are crucial virulence factors produced by Pseudomonas aeruginosa and serve an important role in adjusting the interactions between the host and the pathogen. However, the effect of SIRT1 in the regulation of LPS‑induced A459 human alveolar epithelial cells (AECs) oxidative stress remains unclear. The cellular reactive oxygen species (ROS) production was examined in A549 cells that were supplemented with LPS. Relative cell signaling pathway proteins were further investigated by western blot analysis. It was identified that LPS downregulated SIRT1 expression, however, upregulated ROS generation, which was associated with the increase of nuclear factor (NF)‑κB and acetyl‑NF‑κB. Activation of SIRT1 by resveratrol significantly reversed the effects of LPS on A549 cells. By contrast, inhibition of SIRT1 by nicotinamide had the opposite effects that enhance cell ROS production. Thus, the results indicated that SIRT1 serves an important role in the regulation of oxidative stress induced by LPS in human AECs.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Respiratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| | - Kuiqing Shao
- Department of Urinary Surgery, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
13
|
Chian CF, Chiang CH, Chuang CH, Liu SL. Inhibitor of nuclear factor-κB, SN50, attenuates lipopolysaccharide-induced lung injury in an isolated and perfused rat lung model. Transl Res 2014; 163:211-20. [PMID: 24646628 DOI: 10.1016/j.trsl.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/25/2023]
Abstract
NF-κB cell permeable inhibitory peptide (SN50) inhibits translocation of nuclear factor-κB (NF-κB) and production of inflammatory cytokines that are implicated in lipopolysaccharide (LPS)-induced lung injury (LPSLI). However, the protective effect of SN50 in LPSLI is unclear. We explored the cellular and molecular mechanisms of SN50 treatment in LPSLI. LPSLI was induced by intratracheal instillation of 10 mg/kg LPS using an isolated and perfused rat lung model. SN50 was administered in the perfusate 15 minutes before LPS was administered. Hemodynamics, lung histologic change, inflammatory responses, and activation of apoptotic pathways were evaluated. After LPSLI, increased pulmonary vascular permeability and lung weight gain was observed. The levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, myeloperoxidase, and macrophage inflammatory protein-2 increased in bronchoalveolar lavage fluids. Lung-tissue expression of TNF-α, IL-1β, mitogen-activated protein kinases (MAPKs), caspase-3, p-AKT (serine-threonine kinase, also known as protein kinase B), and plasminogen activator inhibitor-1 (PAI-1) was greater in the LPS group compared with controls. Upregulation and activation of NF-κB was associated with increased lung injury in LPSLI. SN50 attenuated the inflammatory responses, including expression of IL-1β, TNF-α, myeloperoxidase, MAPKs, PAI-1, and NF-κB; downregulation of apoptosis indicated by caspase-3 and p-AKT expression was also observed. In addition, SN50 mitigated the increase in the lung weight, pulmonary vascular permeability, and lung injury. In conclusion, LPSLI is associated with inflammatory responses, apoptosis, and coagulation. NF-κB is an important therapeutic target in the treatment of LPSLI. SN50 inhibits translocation of NF-κB and attenuates LPSLI.
Collapse
Affiliation(s)
- Chih-Feng Chian
- Division of Pulmonary and Critical Care Medicine, Internal Medicine Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Huei Chiang
- Division of Pulmonary and Critical Care Medicine, Internal Medicine Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Pulmonary Immunology and Infectious Diseases, Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chiao-Hui Chuang
- Division of Pulmonary Immunology and Infectious Diseases, Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiou-Ling Liu
- Division of Pulmonary Immunology and Infectious Diseases, Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact 2013; 207:58-66. [PMID: 24291008 DOI: 10.1016/j.cbi.2013.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022]
Abstract
Despite the clinical reports, few studies have focused on reducing the cardiotoxicity of cisplatin. In the present study, cardiotoxicity was examined after a single ip injection of cisplatin (7mg/kg) in rats. Apocynin was given in drinking water (600mg/L) for five successive days before and after cisplatin injection. At the end of the experiment, hemodynamic parameters were recorded, animals were sacrificed and serum creatine kinase-MB activity was determined. The whole ventricle was isolated for estimation of tumor necrosis factor-alpha (TNF-α) content, NADPH oxidase, myeloperoxidase and caspase-3 activities in addition to nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor kappa B (NF-κB) gene expressions. Furthermore, oxidative stress markers and antioxidant enzymes were measured in postmitochondrial and mitochondrial fractions. Mitochondrial membrane potential, nuclear DNA fragmentation and cardiomyocyte cross-sectional area were also evaluated. Apocynin was effective against cisplatin-induced decrement in heart rate and blood pressure. Moreover, pretreatment with apocynin notably ameliorated the state of oxidative stress, mitigated inflammation and preserved mitochondrial membrane potential. Apocynin provided also a significant cardioprotection as revealed by alleviating the overexpression of Nrf2, HO-1 and NF-κB, the elevation of caspase-3 activity, the prominent nuclear DNA fragmentation and the decreased cardiomyocyte cross-sectional area. This study highlights the potential role of apocynin in inhibiting cisplatin-induced hemodynamic changes, postmitochondrial and mitochondrial damage as indicated by improvement in the state of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Maha M El-Sawalhi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Ketoprofen impairs immunosuppression induced by severe sepsis and reveals an important role for prostaglandin E2. Shock 2013; 38:620-9. [PMID: 23143054 DOI: 10.1097/shk.0b013e318272ff8a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanism of immunosuppression induced by severe sepsis is not fully understood. The production of prostaglandin E2 (PGE2) during sepsis is well known, but its role in long-term consequences of sepsis has not been explored. The current study evaluates the role of PGE2 in the development of immunosuppression secondary to sepsis and its potential as therapeutic target. Cecal ligation and puncture was used as an experimental model for sepsis induction in Balb/c and C57BL/6 mice. Immunosuppression was evaluated by the response to secondary infection with Aspergillus fumigatus in sepsis survivors. The role of prostanoids was evaluated in vivo and in vitro by treatment with the cyclooxygenase inhibitor ketoprofen. Balb/c mice were more susceptible than C57BL/6 to severe sepsis and to secondary infection, with a greater mortality rate. Prostaglandin E2 concentrations found in bronchoalveolar lavage in sham and cecal ligation and puncture group after fungal challenge were much higher in Balb/c than in C57BL/6 mice. Ketoprofen treatment improved survival of septic Balb/c mice subjected to secondary infection, while also enhancing macrophage phagocytosis and neutrophil recruitment to the lungs. We identified a pivotal role for PGE2 acting on EP4 receptors in modulating cytokine production differentially by sham and septic macrophages. Furthermore, sepsis also altered key enzymes in PGE2 synthesis and degradation. Our results indicate the involvement of PGE2 in severe sepsis-induced immunosuppression. Inhibition of PGE2 production represents an attractive target to improve innate immune response against secondary infection in the immunocompromised host.
Collapse
|
16
|
Salvianolic Acid B Protects From Pulmonary Microcirculation Disturbance Induced by Lipopolysaccharide in Rat. Shock 2013; 39:317-25. [DOI: 10.1097/shk.0b013e318283773e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|