1
|
Justice CN, Zhu X, Li J, O'Donnell JM, Vanden Hoek TL. Intra-ischemic hypothermia cardioprotection involves modulation of PTEN/Akt/ERK signaling and fatty acid oxidation. Physiol Rep 2023; 11:e15611. [PMID: 36807889 PMCID: PMC9938006 DOI: 10.14814/phy2.15611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release. Left ventricular function was monitored continuously in isolated rat hearts subjected to 20 min of global, no-flow ischemia. Moderate cooling (30°C) was applied at the start of ischemia and hearts were rewarmed after 10 min of reperfusion. The effect of TH on protein phosphorylation and expression at 0 and 30 min of reperfusion was investigated by western blot analysis. Post-ischemic cardiac metabolism was investigated by 13 C-NMR. TH enhanced recovery of cardiac function, reduced taurine release, and enhanced PTEN phosphorylation and expression. Phosphorylation of Akt and ERK1/2 was increased at the end of ischemia but decreased at the end of reperfusion. On NMR analysis, TH-treated hearts displayed decreased fatty acid oxidation. Direct cardioprotection by moderate intra-ischemic TH is associated with decreased fatty acid oxidation, reduced taurine release, enhanced PTEN phosphorylation and expression, and enhanced activation of both Akt and ERK1/2 prior to reperfusion.
Collapse
Affiliation(s)
- Cody N. Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiangdong Zhu
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jing Li
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - J. Michael O'Donnell
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Terry L. Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Center for Cardiovascular ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Sanz MN, Farine E, Niederberger P, Méndez-Carmona N, Wyss RK, Arnold M, Gulac P, Fiedler GM, Gressette M, Garnier A, Carrel TP, Tevaearai Stahel HT, Longnus SL. Cardioprotective reperfusion strategies differentially affect mitochondria: Studies in an isolated rat heart model of donation after circulatory death (DCD). Am J Transplant 2019; 19:331-344. [PMID: 30019521 DOI: 10.1111/ajt.15024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023]
Abstract
Donation after circulatory death (DCD) holds great promise for improving cardiac graft availability; however, concerns persist regarding injury following warm ischemia, after donor circulatory arrest, and subsequent reperfusion. Application of preischemic treatments is limited for ethical reasons; thus, cardioprotective strategies applied at graft procurement (reperfusion) are of particular importance in optimizing graft quality. Given the key role of mitochondria in cardiac ischemia-reperfusion injury, we hypothesize that 3 reperfusion strategies-mild hypothermia, mechanical postconditioning, and hypoxia, when briefly applied at reperfusion onset-provoke mitochondrial changes that may underlie their cardioprotective effects. Using an isolated, working rat heart model of DCD, we demonstrate that all 3 strategies improve oxygen-consumption-cardiac-work coupling and increase tissue adenosine triphosphate content, in parallel with increased functional recovery. These reperfusion strategies, however, differentially affect mitochondria; mild hypothermia also increases phosphocreatine content, while mechanical postconditioning stimulates mitochondrial complex I activity and reduces cytochrome c release (marker of mitochondrial damage), whereas hypoxia upregulates the expression of peroxisome proliferator-activated receptor-gamma coactivator (regulator of mitochondrial biogenesis). Characterization of the role of mitochondria in cardioprotective reperfusion strategies should aid in the identification of new, mitochondrial-based therapeutic targets and the development of effective reperfusion strategies that could ultimately facilitate DCD heart transplantation.
Collapse
Affiliation(s)
- Maria N Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Emilie Farine
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Petra Niederberger
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Patrik Gulac
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Georg M Fiedler
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mélanie Gressette
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Anne Garnier
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Russo I, Femminò S, Barale C, Tullio F, Geuna S, Cavalot F, Pagliaro P, Penna C. Cardioprotective Properties of Human Platelets Are Lost in Uncontrolled Diabetes Mellitus: A Study in Isolated Rat Hearts. Front Physiol 2018; 9:875. [PMID: 30042694 PMCID: PMC6048273 DOI: 10.3389/fphys.2018.00875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelets affect myocardial damage from ischemia/reperfusion. Redox-dependent sphingosine-1-phosphate production and release are altered in diabetic platelets. Sphingosine-1-phosphate is a double-edged sword for ischemia/reperfusion injury. Therefore, we aimed to verify whether: (1) human healthy- or diabetic-platelets are cardioprotective, (2) sphingosine-1-phosphate receptors and downstream kinases play a role in platelet-induced cardioprotection, and (3) a correlation between platelet redox status and myocardial ischemia/reperfusion injury exists. Isolated rat hearts were subjected to 30-min ischemia and 1-h reperfusion. Infarct size was studied in hearts pretreated with healthy- or diabetic-platelets. Healthy-platelets were co-infused with sphingosine-1-phosphate receptor blocker, ERK-1/2 inhibitor, PI3K antagonist or PKC inhibitor to ascertain the cardioprotective mechanisms. In platelets we assessed (i) aggregation response to ADP, collagen, and arachidonic-acid, (ii) cyclooxygenase-1 levels, and (iii) AKT and ERK-phosphorylation. Platelet sphingosine-1-phosphate production and platelet levels of reactive oxygen species (ROS) were quantified and correlated to infarct size. Infarct size was reduced by about 22% in healthy-platelets pretreated hearts only. This cardioprotective effect was abrogated by either sphingosine-1-phosphate receptors or ERK/PI3K/PKC pathway blockade. Cyclooxygenase-1 levels and aggregation indices were higher in diabetic-platelets than healthy-platelets. Diabetic-platelets released less sphingosine-1-phosphate than healthy-platelets when mechanical or chemically stimulated in vitro. Yet, ROS levels were higher in diabetic-platelets and correlated with infarct size. Cardioprotective effects of healthy-platelet depend on the platelet’s capacity to activate cardiac sphingosine-1-phosphate receptors and ERK/PI3K/PKC pathways. However, diabetic-platelets release less S1P and lose cardioprotective effects. Platelet ROS levels correlate with infarct size. Whether these redox alterations are responsible for sphingosine-1-phosphate dysfunction in diabetic-platelets remains to be ascertained.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Cristina Barale
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy
| | - Franco Cavalot
- Internal Medicine and Metabolic Disease Unit, AOU San Luigi, University of Turin, Turin, Italy.,Ospedale San Luigi Gonzaga, Orbassano, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, AOU San Luigi, University of Turin, Turin, Italy.,Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| |
Collapse
|