1
|
Martins Januário W, Prata ERBDA, Natali AJ, Prímola-Gomes TN. Normal gastrointestinal temperature values measured through ingestible capsules technology: a systematic review. J Med Eng Technol 2023; 47:389-395. [PMID: 38780358 DOI: 10.1080/03091902.2024.2354793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Climate change has amplified the importance of continuous and precise body core temperature (Tcore) monitoring in the everyday life. In this context, assessing Tcore through ingestible capsules technology, i.e., gastrointestinal temperature (Tgastrointestinal), emerges as a good alternative to prevent heat-related illness. Therefore, we conducted a systematic review to point out values of normal Tgastrointestinal measured through ingestible capsules in healthy humans. The study followed PRISMA guidelines and searched the PubMed and Scielo databases from 1971 to 2023. Our search strategy included the descriptors ("gastrointestinal temperature") AND ("measurement"), and eligible studies had to be written in English and measured Tgastrointestinal using ingestible capsules or sensors in healthy adults aged 18-59 at rest. Two pairs of researchers independently reviewed titles and abstracts and identified 35 relevant articles out of 1,088 in the initial search. An average value of 37.13 °C with a standard deviation of 0.24 °C was observed, independently of the gender. The values measured ranged from 36.70 °C to 37.69 °C. In conclusion, this systematic review pointed out the mean value of 37.13 ± 0.24 °C measured by ingestible capsules as reference for resting Tgastrointestinal in healthy adult individuals.
Collapse
Affiliation(s)
- William Martins Januário
- Departamento de Educação Física, Laboratório de Performance Humana, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | - Antônio José Natali
- Departamento de Educação Física, Laboratório de Biologia do Exercício, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Thales Nicolau Prímola-Gomes
- Departamento de Educação Física, Laboratório de Performance Humana, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
2
|
Al-Husseini A, Fazel Bakhsheshi M, Gard A, Tegner Y, Marklund N. Shorter recovery time in concussed elite ice hockey players by early head-and-neck cooling - a clinical trial. J Neurotrauma 2022. [PMID: 36222612 DOI: 10.1089/neu.2022.0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sports-related concussion (SRC) is most commonly sustained in contact sports, and is defined as a mild traumatic brain injury. An exercise-induced elevation of core body temperature is associated with increased brain temperature that may accelerate secondary injury processes following SRC, and exacerbate the brain injury. In a recent pilot study, acute head-neck cooling of 29 concussed ice hockey players resulted in shorter time to return-to-play. Here, we extended the clinical trial to include players of 19 male elite Swedish ice hockey teams over 5 seasons (2016-2021). In the intervention teams, acute head-neck cooling was implemented using a head cap for ≥45 minutes in addition to the standard SRC management used in controls. The primary endpoint was time from SRC until return-to-play (RTP). Sixty-one SRCs were included in the intervention group and 71 SRCs in the control group. The number of previous SRCs was 2 (median and interquartile range (IQR): 1.0 - 2.0) and 1 (IQR 1.0 - 2.0) in the intervention and control groups, respectively; p= 0.293. Median time to initiate head-neck cooling was 10 min (IQR 7-15; range 5-30 min) and median duration of cooling was 45 min (IQR 45-50; range 45-70 min). The median time to RTP was 9 days in the intervention group (IQR 7-13.5 days) and 13 days in the control group (IQR 9-30; p<0.001). The proportion of players out from play for more than the expected recovery time of 14 days was 24.7% in the intervention group, and 43.7% in controls (p<0.05). Study limitations include that a) allocation to cooling or control management was at the discretion of the medical staff of each teams, decided prior to each season, and not by strict randomization, b) no sham cap was used and evaluations could not be performed by blinded assessors and c) it could not be established with certainty that injury severity was similar between groups. While the results should thus be interpreted with caution, early head-neck cooling, with the aim of attenuating cerebral hyperthermia, may reduce post-SRC symptoms and lead to earlier return-to-play in elite ice hockey players.
Collapse
Affiliation(s)
- Ali Al-Husseini
- Lund University, 5193, Department of Clinical Sciences, Neurosurgery, Lund, Sweden;
| | | | - Anna Gard
- Lund University, 5193, Department of Clinical Sciences Lund, Entregatan 7, Hisshall EA, plan 4, Lund, Lund, Skane, Sweden, 22242;
| | - Yelverton Tegner
- Luleå University of Technology, Division of Medical Sciences, Department of Health Sciences, Department of Health Sciences, Luleå, Sweden, SE 971 87;
| | - Niklas Marklund
- Lund University, 5193, Clinical Sciences, Neurosurgery, Klinikgatan 17B, Lund, Sweden, 221 85.,Skåne University Hospital Lund, 59564, Neurosurgery, Lund, Sweden, 221 85;
| |
Collapse
|
3
|
Gard A, Tegner Y, Bakhsheshi MF, Marklund N. Selective head-neck cooling after concussion shortens return-to-play in ice hockey players. Concussion 2021; 6:CNC90. [PMID: 34084556 PMCID: PMC8162197 DOI: 10.2217/cnc-2021-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate whether selective head–neck cooling could shorten recovery after sports-related concussions (SRCs). In a nonrandomized study of 15 Swedish professional ice hockey teams, 29 concussed players received immediate head and neck cooling for ≥30 min (initiated at 12.3 ± 9.2 min post-SRC by a portable cooling system), and 52 SRC controls received standard management. Players receiving head–neck cooling had shorter time to return-to-play than controls (7 vs 12.5 days, p < 0.0001), and 7% in the intervention group versus 25% in the control group were out of play for ≥3 weeks (p = 0.07). Immediate selective head–neck cooling is a promising option in the acute management of SRC that should be addressed in larger cohorts.
Collapse
Affiliation(s)
- Anna Gard
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Mohammad Fazel Bakhsheshi
- Lund University, Family Medicine & Community Medicine, Lund, Sweden.,BrainCool AB, Medicon Village, Lund, Sweden
| | - Niklas Marklund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
4
|
Positional Differences in Pre-Season Scrimmage Performance of Division I Collegiate Football Players. SENSORS 2021; 21:s21030769. [PMID: 33498820 PMCID: PMC7865881 DOI: 10.3390/s21030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to describe the physical demands of American football players using novel performance analysis techniques. Heart rate (HR) and accelerometer-based activity levels were observed across two pre-season scrimmages in 23 Division I collegiate football players (age: 19 ± 1 y, height: 1.90 ± 0.06 m, weight: 116.2 ± 19.4 kg). Data were analyzed using a MATLAB program and inter-rater reproducibility assessed using inter-class correlations (ICC). Players were analyzed by side (offense/defense) and position (skill/non-skill). Performance variables assessed in bursts of activity included burst duration, HRmean and HRmax (bpm), and mean activity (vector magnitude units [vmu]). Exercise intensity was categorized as time spent in % HRmax in 5% increments. The burst duration (8.1±3.9 min, ICC = 0.72), HRmean (157 ± 12 bpm, ICC = 0.96) and mean activity (0.30 ± 0.05 vmu, ICC = 0.86) were reproducible. HRmean (p = 0.05) and HRmax (p = 0.001) were greater on defense. Offense spent more time at 65-70% HRmax (p = 0.01), 70-75% HRmax (p = 0.02) while defense spent more time 90-95% HRmax and ≥95% HRmax (p = 0.03). HRmean (p = 0.70) and HRpeak (p = 0.80) were not different between positions across both sides. Skilled players demonstrated greater mean activity (p = 0.02). The sport-specific analysis described HR and activity level in a reproducible manner. Automated methods of assessing HR may be useful in training and game time performance but ultimately provides support to coaching decision making.
Collapse
|
5
|
YEARGIN SUSANW, KERR ZACHARYY, CASA DOUGLASJ, DJOKO ARISTARQUE, HAYDEN ROSS, PARSONS JOHNT, DOMPIER THOMASP. Epidemiology of Exertional Heat Illnesses in Youth, High School, and College Football. Med Sci Sports Exerc 2016; 48:1523-9. [DOI: 10.1249/mss.0000000000000934] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Davis JK, Baker LB, Barnes K, Ungaro C, Stofan J. Thermoregulation, Fluid Balance, and Sweat Losses in American Football Players. Sports Med 2016; 46:1391-405. [DOI: 10.1007/s40279-016-0527-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Wang H, Wang B, Jackson K, Miller CM, Hasadsri L, Llano D, Rubin R, Zimmerman J, Johnson C, Sutton B. A novel head-neck cooling device for concussion injury in contact sports. Transl Neurosci 2015; 6:20-31. [PMID: 28123788 PMCID: PMC4936612 DOI: 10.1515/tnsci-2015-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA; Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire M Miller
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel Llano
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-Champaign, Carle Foundation Hospital, Urbana, USA; The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Rachael Rubin
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jarred Zimmerman
- Department of Sports Medicine, Carle Foundation Hospital, Urbana, USA
| | - Curtis Johnson
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Brad Sutton
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
8
|
Jacobson BH, Conchola EG, Glass RG, Thompson BJ. Longitudinal Morphological and Performance Profiles for American, NCAA Division I Football Players. J Strength Cond Res 2013; 27:2347-54. [DOI: 10.1519/jsc.0b013e31827fcc7d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Jacobson BH. Anthropometric cross-sectional comparisons of college football players and potential health implications. J Strength Cond Res 2013; 26:3358-64. [PMID: 22290523 DOI: 10.1519/jsc.0b013e31824b5e6c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current college football players appear to be larger in stature than those of the past, but few comparisons exist that have quantified such data over the span of over half a century. The purpose of this study was to compare anthropometric changes in college football players over a period of 7 decades and to address the health implications associated with extreme size. Offensive and defensive positions were targeted based on line play (offensive linemen [OLs] and defensive linemen [DLs]) or speed positions (wide receivers [WRs] and cornerbacks [DBs]), and data on height and weight were collected from official rosters provided by the participating National Collegiate Athletic Association Division I universities. The results indicated that OL significantly (p < 0.001) increased 50.8% in body weight (88.5 vs. 133.5 kg) and 5.4% in height, DLs significantly increased 50.9% in weight (87.2 vs. 131.6 kg) and 6.7% in height, WRs increased 7.7% in weight (79.3 vs. 85.5 kg) and 1.9% in height, and cornerbacks increased 10.1% in weight (78 vs. 86.7 kg) and 2.3% in height since 1950. There were no significant differences in weight by offensive line position (center, guard, and tackle) and no significant differences among class status. The extraordinary size of linemen begins in high school and is sustained through college and the pros. Without efforts in detraining, such extreme sizes may warrant concerns regarding injury, heat stress, obesity, and general health status.
Collapse
Affiliation(s)
- Bert H Jacobson
- School of Applied Health and Educational Psychology, Harrison Health and Human Performance Laboratory, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
10
|
Prevention of Heat-Related Illness: A New Modality Offers New Insight. South Med J 2009; 102:557-8. [DOI: 10.1097/smj.0b013e3181a56800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|