1
|
Ausoni S, Calamelli S, Saccà S, Azzarello G. How progressive cancer endangers the heart: an intriguing and underestimated problem. Cancer Metastasis Rev 2021; 39:535-552. [PMID: 32152913 DOI: 10.1007/s10555-020-09869-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since it came into being as a discipline, cardio-oncology has focused on the prevention and treatment of cardiotoxicity induced by antitumor chemotherapy and radiotherapy. Over time, it has been proved that even more detrimental is the direct effect generated by cancer cells that release pro-cachectic factors in the bloodstream. Secreted molecules target different organs at a distance, including the heart. Inflammatory and neuronal modulators released by the tumor bulk, either as free molecules or through exosomes, contribute to the pathogenesis of cardiac disease. Progressive cancer causes cachexia and severe cardiac muscle wasting accompanied by cardiomyocyte atrophy, tissue fibrosis, and several functional impairments up to heart failure. The molecular mechanisms responsible for such a cardiac muscle wasting have been partially elucidated in animal models, but minimally investigated in humans, although severe cardiac dysfunction exacerbates global cachexia and hampers efficient anti-cancer treatments. This review provides an overview of cancer-induced structural cardiac and functional damage, drawing on both clinical and scientific research. We start by looking at the pathophysiological mechanisms and evolving epidemiology and go on to discuss prevention, diagnosis, and a multimodal policy of intervention aimed at providing overall prognosis and global care for patients. Despite much interest in the cardiotoxicity of cancer therapies, the direct tumor effect on the heart remains poorly explored. There is still a lack of diagnostic criteria for the identification of the early stages of cardiac disease in cancer patients, while the possibilities that there are for effective prevention are largely underestimated. Research on innovative therapies has claimed considerable advances in preclinical studies, but none of the molecular targets suitable for clinical application has been approved for therapy. These issues are critically discussed here.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padova, Italy.
| | - Sara Calamelli
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Salvatore Saccà
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Giuseppe Azzarello
- Department of Medical Oncology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy.
| |
Collapse
|
2
|
Hishida A, Okugawa Y, Morimoto Y, Shirai Y, Okamoto K, Momokita S, Ogawa A, Tanaka K, Nishikawa R, Toiyama Y, Inoue Y, Sakurai H, Urata H, Tanaka M, McMillan DC, Miki C. Genetic influence of cytokine polymorphisms on the clinical outcome of Japanese gastrointestinal cancer patients in palliative care. Oncol Lett 2019; 17:623-629. [PMID: 30655809 DOI: 10.3892/ol.2018.9614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2018] [Indexed: 11/05/2022] Open
Abstract
Gastrointestinal cancer is one of the most common causes of mortality globally. The present study examined the influence of cytokine genetic polymorphisms [interleukin (IL)-1B C-31T, IL-1RN VNTR, IL-6 C-634G, IL-8 T-251A, IL-10 T-819C and IL-10 A-1082G] on clinical outcomes in patients with gastrointestinal cancer in palliative care. A total of 59 patients with gastrointestinal cancer who were admitted to Iga City General Hospital were analyzed. Genotyping was conducted using a polymerase chain reaction with confronting two-pair primers. Patients with at least one IL-1RN 2 allele demonstrated a significantly better survival (P=0.0275) while those with IL-6-634 G/G demonstrated a worse survival (P=0.0024). Multivariate analyses using the Cox proportional hazard model revealed that those with at least one IL-1RN 2 allele, IL-6-634 G/G or IL-10-1082 A/G had a significantly elevated adjusted hazard ratio of 9.20 (P=0.014), 41.01 (P=0.001) or 6.49 (P=0.046), respectively, compared with those with each homozygous wild-type polymorphism. In addition, the evaluation of weight loss by genotype revealed the potential influence of IL-10 T-819C genotype (P=0.072). IL-1RN, IL-6 and IL-10 polymorphisms were associated with the survival of patients with gastrointestinal cancer, suggesting the clinical feasibility of genetic testing in patients with gastrointestinal cancer in palliative care.
Collapse
Affiliation(s)
- Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshinaga Okugawa
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Biochemical Laboratory, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yuhki Morimoto
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yumiko Shirai
- Department of Nutrition, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Kyoko Okamoto
- Department of Nursing, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Sachiko Momokita
- Department of Biochemical Laboratory, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Aki Ogawa
- Department of Nursing, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Koji Tanaka
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ryutaro Nishikawa
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Sakurai
- Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hisashi Urata
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Motoyoshi Tanaka
- Department of Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Donald C McMillan
- Department of Surgical Science, University of Glasgow School of Medicine, Dentistry and Nursing, Glasgow G4 0SF, UK
| | - Chikao Miki
- Department of Surgery, Iga City General Hospital, Iga, Mie 518-0823, Japan.,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
3
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem Soc Trans 2018; 46:1129-1136. [PMID: 30242118 DOI: 10.1042/bst20180213] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
Abstract
Cancer cachexia is a multifactorial metabolic syndrome characterized by the rapid loss of skeletal muscle mass with or without the loss of fat mass. Nearly 50-80% of all cancer patients' experience rapid weight loss results in ∼20% of cancer-related deaths. The levels of pro-inflammatory and pro-cachectic factors were significantly up-regulated in cachexia patients when compared with the patients who were without cachexia. It is becoming evident that these factors work synergistically to induce cancer cachexia. Extracellular vesicles (EVs) including exosomes and microvesicles are implicated in cell-cell communication, immune response, tissue repair, epigenetic regulation, and in various diseases including cancer. It has been reported that these EVs regulate cancer progression, metastasis, organotropism and chemoresistance. In recent times, the role of EVs in regulating cancer cachexia is beginning to unravel. The aim of this mini article is to review the recent knowledge gained in the field of EVs and cancer cachexia. Specifically, the role of tumour cell-derived EVs in promoting catabolism in distally located skeletal muscles and adipose tissue will be discussed.
Collapse
|
5
|
Kays JK, Shahda S, Stanley M, Bell TM, O'Neill BH, Kohli MD, Couch ME, Koniaris LG, Zimmers TA. Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. J Cachexia Sarcopenia Muscle 2018; 9:673-684. [PMID: 29978562 PMCID: PMC6104116 DOI: 10.1002/jcsm.12307] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/25/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND By the traditional definition of unintended weight loss, cachexia develops in ~80% of patients with pancreatic ductal adenocarcinoma (PDAC). Here, we measure the longitudinal body composition changes in patients with advanced PDAC undergoing 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin therapy. METHODS We performed a retrospective review of 53 patients with advanced PDAC on 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin as first line therapy at Indiana University Hospital from July 2010 to August 2015. Demographic, clinical, and survival data were collected. Body composition measurement by computed tomography (CT), trend, univariate, and multivariate analysis were performed. RESULTS Among all patients, three cachexia phenotypes were identified. The majority of patients, 64%, had Muscle and Fat Wasting (MFW), while 17% had Fat-Only Wasting (FW) and 19% had No Wasting (NW). NW had significantly improved overall median survival (OMS) of 22.6 months vs. 13.0 months for FW and 12.2 months for MFW (P = 0.02). FW (HR = 5.2; 95% confidence interval = 1.5-17.3) and MFW (HR = 1.8; 95% confidence interval = 1.1-2.9) were associated with an increased risk of mortality compared with NW. OMS and risk of mortality did not differ between FW and MFW. Progression of disease, sarcopenic obesity at diagnosis, and primary tail tumours were also associated with decreased OMS. On multivariate analysis, cachexia phenotype and chemotherapy response were independently associated with survival. Notably, CT-based body composition analysis detected tissue loss of >5% in 81% of patients, while the traditional definition of >5% body weight loss identified 56.6%. CONCLUSIONS Distinct cachexia phenotypes were observed in this homogeneous population of patients with equivalent stage, diagnosis, and first-line treatment. This suggests cellular, molecular, or genetic heterogeneity of host or tumour. Survival among patients with FW was as poor as for MFW, indicating adipose tissue plays a crucial role in cachexia and PDAC mortality. Adipose tissue should be studied for its mechanistic contributions to cachexia.
Collapse
Affiliation(s)
- Joshua K. Kays
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Safi Shahda
- Department of Hematology/OncologyIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Research Innovation, and TherapyIndianapolisINUSA
- Indiana University Simon Cancer CenterIndianapolisINUSA
| | - Melissa Stanley
- Department of Hematology/OncologyIndiana University School of MedicineIndianapolisINUSA
| | - Teresa M. Bell
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Bert H. O'Neill
- Department of Hematology/OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Cancer CenterIndianapolisINUSA
| | - Marc D. Kohli
- Department of RadiologyUniversity of California San Francisco School of MedicineSan FranciscoCAUSA
| | - Marion E. Couch
- Department of Otolaryngology–Head and Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Research Innovation, and TherapyIndianapolisINUSA
- Indiana University Simon Cancer CenterIndianapolisINUSA
| | - Leonidas G. Koniaris
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Research Innovation, and TherapyIndianapolisINUSA
- Indiana University Simon Cancer CenterIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Research Innovation, and TherapyIndianapolisINUSA
- Indiana University Simon Cancer CenterIndianapolisINUSA
| |
Collapse
|
6
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
7
|
Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol 2016; 54:28-41. [PMID: 26860754 PMCID: PMC4867234 DOI: 10.1016/j.semcdb.2016.02.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients.
Collapse
Affiliation(s)
- Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Melissa L Fishel
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
8
|
Johns N, Tan BH, MacMillan M, Solheim TS, Ross JA, Baracos VE, Damaraju S, Fearon KCH. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies. J Genet 2015; 93:893-916. [PMID: 25572253 DOI: 10.1007/s12041-014-0405-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and to develop their potential as susceptibility biomarkers of cachexia.
Collapse
Affiliation(s)
- N Johns
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies.
Collapse
|
10
|
Fearon KCH. The 2011 ESPEN Arvid Wretlind lecture: cancer cachexia: the potential impact of translational research on patient-focused outcomes. Clin Nutr 2012; 31:577-82. [PMID: 22824237 DOI: 10.1016/j.clnu.2012.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/29/2022]
Abstract
Cancer cachexia is a multifactorial syndrome characterised by loss of skeletal muscle that cannot be fully reversed by conventional nutritional support. Uncertainty continues as to its precise mediators and mechanisms. The pathophysiology is characterised by a variable combination of reduced food intake and abnormal metabolism. Recent evidence has suggested that there may be a genetic component to cachexia with emphasis on genes linked to systemic inflammation. Loss of skeletal muscle mass and function is a major contributor to the excess frailty, disability and increased mortality in cancer cachexia. Whilst muscle mass per se has been considered a key outcome measure in treating cachexia, it might be more rationale to choose a patient-centred outcome such as physical activity. Beyond good medical management, it is important that trials establish basic management for all patients (nutrition, exercise and anti-inflammatory treatment). Specific therapies for cachexia should focus on the key issues of reduced food intake and abnormal metabolism. Whilst combination regimens to treat these issues continue to be explored, there is also interest in biological therapies that target conserved molecular mechanisms of muscle growth/atrophy. The combination of approaches promises a new era for the management of cachexia in the context of supportive oncology.
Collapse
Affiliation(s)
- K C H Fearon
- Clinical Surgery, School of Clinical Sciences and Community Health, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh EH16 4SA, UK.
| |
Collapse
|
11
|
Affiliation(s)
- Ioannis Gioulbasanis
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of MedicineLarissa, Greece
| | - Panagiotis J Vlachostergios
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of MedicineLarissa, Greece
| | - Christos N Papandreou
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of MedicineLarissa, Greece
| |
Collapse
|
12
|
Abstract
Recent scientific advances have contributed much to the dissection of the complex molecular and cellular pathways involved in the connection between cancer and inflammation. The evidence for this connection in humans is based on the association between infection or chronic sterile inflammation and cancer. The decreased incidence of tumors in individuals who have used nonsteroidal anti-inflammatory drugs is supportive of a role for inflammation in cancer susceptibility. The increased incidence of tumors in overweight patients points to a role for adipose tissue inflammation and energy metabolism in cancer. Energy metabolism, obesity, and genetic instability are regulated in part by the relationship of the organism with commensal bacteria that affect inflammation with both local and systemic effects. Different aspects of inflammation appear to regulate all phases of malignant disease, including susceptibility, initiation, progression, dissemination, morbidity, and mortality.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|