1
|
Anand T, Shin H, Ratnasekera A, Tran ML, Huckeby R, Butts L, Stejskal I, Magnotti LJ, Joseph B. Rethinking Balanced Resuscitation in Trauma. J Clin Med 2025; 14:2111. [PMID: 40142918 PMCID: PMC11943041 DOI: 10.3390/jcm14062111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hemorrhagic shock from traumatic injury results in a massive systemic response with activation of the hypothalamic-pituitary-adrenal (HPA) axis, pro-thrombotic and clot-lysis pathways as well as development of an endotheliopathy. With ongoing hemorrhage, these responses become dysregulated and are associated with worsening coagulopathy, microvascular dysfunction, and increased transfusion requirements. Our transfusion practices as well as our understanding of the molecular response to hemorrhage have undergone significant advancement during war. Currently, resuscitation practices address the benefit of the early recognition and management of acute coagulopathy and advocates for balanced resuscitation with either whole blood or a 1:1 ratio of packed red blood cells to fresh frozen plasma (respectively). However, a significant volume of evidence in the last two decades has recognized the importance of the early modulation of traumatic endotheliopathy and the HPA axis via the early administration of plasma, whole blood, and adjunctive treatments such as tranexamic acid (TXA) and calcium. This evidence compels us to rethink our understanding of 'balanced resuscitation' and begin creating a more structured practice to address additional competing priorities beyond coagulopathy. The following manuscript reviews the benefits of addressing the additional interrelated physiologic responses to hemorrhage and seeks to expand beyond our understanding of 'balanced resuscitation'.
Collapse
Affiliation(s)
- Tanya Anand
- Department of Surgery, Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, University of Arizona, Tucson, AZ 85721, USA (A.R.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Han Y, Duan J, Chen M, Huang S, Zhang B, Wang Y, Liu J, Li X, Yu W. Relationship between serum sodium level and sepsis-induced coagulopathy. Front Med (Lausanne) 2024; 10:1324369. [PMID: 38298508 PMCID: PMC10828971 DOI: 10.3389/fmed.2023.1324369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Purpose A discussion about the correlation between the level of serum sodium and sepsis-induced coagulopathy (SIC). Materials and methods A retrospective analysis was conducted on sepsis patients who were admitted to the Intensive Care Unit (ICU) of Nanjing Drum Tower Hospital from January 2021 to December 2022. Based on the presence of coagulation disorders, the patients were divided into two groups: sepsis-induced coagulopathy (SIC) and non-sepsis-induced coagulopathy (non-SIC) groups. We recorded demographic characteristics and laboratory indicators at the time of ICU admission, and analyzed relationship between serum sodium level and SIC. Results One hundred and twenty-five patients with sepsis were enrolled, among which, the SIC and the non-SIC groups included 62 and 63 patients, respectively. Compared to patients in the non-SIC group, the level of serum sodium of those in the SIC was significantly higher (p < 0.001). Multi-factor logistic regression showed serum sodium level was independently associated with SIC (or = 1.127, p = 0.001). Pearson's correlation analysis indicated that the higher the serum sodium level, the significantly higher the SIC score was (r = 0.373, p < 0.001). Additionally, the mortality rate of patients with sepsis in the ICU were significantly correlated with increased serum sodium levels (p = 0.014). Conclusion An increase in serum sodium level was independently associated with an increased occurrence of SIC and also associated with the poor prognosis for patients with sepsis.
Collapse
Affiliation(s)
- Yanyu Han
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianfeng Duan
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shijie Huang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beiyuan Zhang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Wang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiali Liu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyao Li
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Rayatdoost F, Grottke O. The Use of Large Animal Models in Trauma and Bleeding Studies. Hamostaseologie 2023; 43:360-373. [PMID: 37696297 DOI: 10.1055/a-2118-1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Major trauma often results in significant bleeding and coagulopathy, posing a substantial clinical burden. To understand the underlying pathophysiology and to refine clinical strategies to overcome coagulopathy, preclinical large animal models are often used. This review scrutinizes the clinical relevance of large animal models in hemostasis research, emphasizing challenges in translating findings into clinical therapies. METHODS We conducted a thorough search of PubMed and EMBASE databases from January 1, 2010, to December 31, 2022. We used specific keywords and inclusion/exclusion criteria centered on large animal models. RESULTS Our review analyzed 84 pertinent articles, including four animal species: pigs, sheep, dogs, and nonhuman primates (NHPs). Eighty-five percent of the studies predominantly utilized porcine models. Meanwhile, sheep and dogs were less represented, making up only 2.5% of the total studies. Models with NHP were 10%. The most frequently used trauma models involved a combination of liver injury and femur fractures (eight studies), arterial hemorrhage (seven studies), and a combination of hemodilution and liver injury (seven studies). A wide array of coagulation parameters were employed to assess the efficacy of interventions in hemostasis and bleeding control. CONCLUSIONS Recognizing the diverse strengths and weaknesses of large animal models is critical for trauma and hemorrhage research. Each model is unique and should be chosen based on how well it aligns with the specific scientific objectives of the study. By strategically considering each model's advantages and limitations, we can enhance our understanding of trauma and hemorrhage pathophysiology and further advance the development of effective treatments.
Collapse
Affiliation(s)
- Farahnaz Rayatdoost
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Oliver Grottke
- Department of Anaesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Zhong X, Du W, Zong Z, Jiang R, Jia Y, Ye Z, Yang H. Features of Coagulo-Fibrinolytic Derangement Due to Bleeding in Nonacclimatized Rabbits Acutely Exposed to High Altitude. High Alt Med Biol 2023; 24:68-75. [PMID: 36940102 DOI: 10.1089/ham.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Zhong, Xin, Wenqiong Du, Zhaowen Zong, Renqing Jiang, Yijun Jia, Zhao Ye, and Haoyang Yang. Features of coagulo-fibrinolytic derangement due to bleeding in nonacclimatized rabbits acutely exposed to high altitude. High Alt Med Biol. 24:68-75, 2023. Background: The present study aimed to observe the time course of coagulo-fibrinolytic derangement due to bleeding in rabbits acutely exposed to high altitude (HA). Materials and Methods: Forty-eight rabbits were randomly divided into four groups and were subjected to minor bleeding at low altitude, major bleeding at low altitude, minor bleeding after acute exposure to HA, and major bleeding after acute exposure to HA. To produce minor and major bleeding, 10% and 30% of the total blood volume was removed, respectively. At designated time points, samples were taken for laboratory examination. Results: While minor bleeding at low altitude led to minor coagulo-fibrinolytic derangements, it led to complicated derangements at HA, which presented as an early hypercoagulable state and transition to hypocoagulable and hyperfibrinolytic states with lower clot firmness. Major bleeding at HA resulted in greater derangements of the R time, K values, the D-dimer concentration, the alpha angle, maximum amplitude, and the concentration of fibrinogen than were observed at low altitude. Conclusions: The extent of coagulo-fibrinolytic derangements due to bleeding in rabbits after acute exposure to HA was more severe and complicated than that at low altitude. Therefore, proper resuscitation should be applied based on these changes.
Collapse
Affiliation(s)
- Xin Zhong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Wenqiong Du
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Renqing Jiang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Yijun Jia
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Zhao Ye
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Haoyang Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department for Combat Casualty Care Training, Training Base for Army Health Care and Department of Orthopedics, XinQiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Ask A, Eltringham-Smith L, Bhakta V, Donkor DA, Pryzdial EL, Sheffield WP. Spotlight on animal models of acute traumatic coagulopathy: An update. Transfus Apher Sci 2022; 61:103412. [DOI: 10.1016/j.transci.2022.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kozynets GP, Tsyhankov VP, Korolova DS, Gornytska OV, Savchuk OM, Chernyshenko VO, Chernyshenko TM, Platonova TM. The rise of factor X level in blood plasma of patients at severe burn injuries. J Burn Care Res 2021; 43:965-970. [PMID: 34875688 DOI: 10.1093/jbcr/irab235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work is dedicated to the detection of imbalance between the pro- and anti-coagulant branches of hemostasis at severe burn injuries by evaluating the content or activity of individual clotting factors. To select the targets for accurate diagnostics we measured the concentrations of soluble fibrin monomeric complexes and fibrinogen, levels of total prothrombin, factor X, protein C and antithrombin III, and recorded the time of clotting in activated partial thromboplastin time and prothrombin time tests. Factor X level was increased in 26 % of patients on the first day after the burn and it rose further in 62 % patients on the 14 th day of recovery. Increasing factor X level is assumed to be a risk factor of thrombotic complications. We propose to use it as a marker of predisposition to thrombosis at severe burn injury.
Collapse
Affiliation(s)
- George P Kozynets
- Shupyk National Medical Academy of Postgraduate Education of Ministry of Health of Ukraine, Kyiv
| | - Volodymyr P Tsyhankov
- Shupyk National Medical Academy of Postgraduate Education of Ministry of Health of Ukraine, Kyiv
| | | | | | | | | | - Tamara M Chernyshenko
- Shupyk National Medical Academy of Postgraduate Education of Ministry of Health of Ukraine, Kyiv
| | | |
Collapse
|
7
|
Dyer WB, Tung JP, Li Bassi G, Wildi K, Jung JS, Colombo SM, Rozencwajg S, Simonova G, Chiaretti S, Temple FT, Ainola C, Shuker T, Palmieri C, Shander A, Suen JY, Irving DO, Fraser JF. An Ovine Model of Hemorrhagic Shock and Resuscitation, to Assess Recovery of Tissue Oxygen Delivery and Oxygen Debt, and Inform Patient Blood Management. Shock 2021; 56:1080-1091. [PMID: 34014886 DOI: 10.1097/shk.0000000000001805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Aggressive fluid or blood component transfusion for severe hemorrhagic shock may restore macrocirculatory parameters, but not always improve microcirculatory perfusion and tissue oxygen delivery. We established an ovine model of hemorrhagic shock to systematically assess tissue oxygen delivery and repayment of oxygen debt; appropriate outcomes to guide Patient Blood Management. METHODS Female Dorset-cross sheep were anesthetized, intubated, and subjected to comprehensive macrohemodynamic, regional tissue oxygen saturation (StO2), sublingual capillary imaging, and arterial lactate monitoring confirmed by invasive organ-specific microvascular perfusion, oxygen pressure, and lactate/pyruvate levels in brain, kidney, liver, and skeletal muscle. Shock was induced by stepwise withdrawal of venous blood until MAP was 30 mm Hg, mixed venous oxygen saturation (SvO2) < 60%, and arterial lactate >4 mM. Resuscitation with PlasmaLyte® was dosed to achieve MAP > 65 mm Hg. RESULTS Hemorrhage impacted primary outcomes between baseline and development of shock: MAP 89 ± 5 to 31 ± 5 mm Hg (P < 0.01), SvO2 70 ± 7 to 23 ± 8% (P < 0.05), cerebral regional tissue StO2 77 ± 11 to 65 ± 9% (P < 0.01), peripheral muscle StO2 66 ± 8 to 16 ± 9% (P < 0.01), arterial lactate 1.5 ± 1.0 to 5.1 ± 0.8 mM (P < 0.01), and base excess 1.1 ± 2.2 to -3.6 ± 1.7 mM (P < 0.05). Invasive organ-specific monitoring confirmed reduced tissue oxygen delivery; oxygen tension decreased and lactate increased in all tissues, but moderately in brain. Blood volume replacement with PlasmaLyte® improved primary outcome measures toward baseline, confirmed by organ-specific measures, despite hemoglobin reduced from baseline 10.8 ± 1.2 to 5.9 ± 1.1 g/dL post-resuscitation (P < 0.01). CONCLUSION Non-invasive measures of tissue oxygen delivery and oxygen debt repayment are suitable outcomes to inform Patient Blood Management of hemorrhagic shock, translatable for pre-clinical assessment of novel resuscitation strategies.
Collapse
Affiliation(s)
- Wayne B Dyer
- Australian Red Cross Lifeblood, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - John-Paul Tung
- Australian Red Cross Lifeblood, Brisbane, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Cardiovascular Research Institute, Basel, Switzerland
| | - Jae-Seung Jung
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milano, Italy
| | - Sacha Rozencwajg
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Sorbonne Université, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Medical ICU, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gabriela Simonova
- Australian Red Cross Lifeblood, Brisbane, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Fergal T Temple
- Australian Red Cross Lifeblood, Brisbane, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Tristan Shuker
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Aryeh Shander
- Department of Anesthesiology, Critical Care and Hyperbaric Medicine, Englewood Health, Englewood
- TeamHealth, Englewood Health, Englewood
- UF College of Medicine, University of Florida, Gainesville
- Department of Anesthesiology, Medicine and Surgery, Icahn School of Medicine, Mount Sinai Hospital, New York
- Department of Anesthesiology and Critical Care, Rutgers University, Newark
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David O Irving
- Australian Red Cross Lifeblood, Sydney, Australia
- Faculty of Health, University of Technology, Sydney, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Mitsuda S, Uzawa K, Sawa M, Ando T, Yoshikawa T, Miyao H, Yorozu T, Ushiyama A. Vascular Endothelial Glycocalyx Plays a Role in the Obesity Paradox According to Intravital Observation. Front Cardiovasc Med 2021; 8:727888. [PMID: 34796208 PMCID: PMC8593246 DOI: 10.3389/fcvm.2021.727888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
According to the “obesity paradox,” for severe conditions, individuals with obesity may be associated with a higher survival rate than those who are lean. However, the physiological basis underlying the mechanism of the obesity paradox remains unknown. We hypothesize that the glycocalyx in obese mice is thicker and more resistant to inflammatory stress than that in non-obese mice. In this study, we employed intravital microscopy to elucidate the differences in the vascular endothelial glycocalyx among three groups of mice fed diets with different fat concentrations. Male C57BL/6N mice were divided into three diet groups: low-fat (fat: 10% kcal), medium-fat (fat: 45% kcal), and high-fat (fat: 60% kcal) diet groups. Mice were fed the respective diet from 3 weeks of age, and a chronic cranial window was installed at 8 weeks of age. At 9 weeks of age, fluorescein isothiocyanate-labeled wheat germ agglutinin was injected to identify the glycocalyx layer, and brain pial microcirculation was observed within the cranial windows. We randomly selected arterioles of diameter 15–45 μm and captured images. The mean index of the endothelial glycocalyx was calculated using image analysis and defined as the glycocalyx index. The glycocalyx indexes of the high-fat and medium-fat diet groups were significantly higher than those of the low-fat diet group (p < 0.05). There was a stronger positive correlation between vessel diameter and glycocalyx indexes in the high-fat and medium-fat diet groups than in the low-fat diet group. The glycocalyx indexes of the non-sepsis model in the obese groups were higher than those in the control group for all vessel diameters, and the positive correlation was also stronger. These findings indicate that the index of the original glycocalyx may play an important role in the obesity paradox.
Collapse
Affiliation(s)
- Shingo Mitsuda
- Department of Anesthesiology, National Disaster Medical Center, Tokyo, Japan
| | - Kohji Uzawa
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Marie Sawa
- Meiji Pharmaceutical University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Tadao Ando
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Takahiro Yoshikawa
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hideki Miyao
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, Saitama-Ken, Japan
| | - Tomoko Yorozu
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| |
Collapse
|
9
|
Richards JE, Samet RE, Grissom TE. Scratching the Surface: Endothelial Damage in Traumatic Hemorrhagic Shock. Adv Anesth 2021; 39:35-51. [PMID: 34715980 DOI: 10.1016/j.aan.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Justin E Richards
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, 22 S. Greene Street, Suite T1R77, Baltimore, MD 21201, USA
| | - Ron E Samet
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, 22 S. Greene Street, Suite T1R77, Baltimore, MD 21201, USA
| | - Thomas E Grissom
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, 22 S. Greene Street, Suite T1R77, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
Azumaguchi R, Tokinaga Y, Kazuma S, Kimizuka M, Hamada K, Sato T, Yamakage M. Validation of the relationship between coagulopathy and localization of hydroxyethyl starch on the vascular endothelium in a rat hemodilution model. Sci Rep 2021; 11:10694. [PMID: 34021192 PMCID: PMC8140106 DOI: 10.1038/s41598-021-89889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
Various anticoagulant properties have been associated with hydroxyethyl starch (HES). However, the mechanism remains unclear and it has not been fully considered whether these properties are beyond the dilutional effect itself. The aim of this study was to reproduce the coagulopathy induced by HES and to test the hypothesis that the coagulopathy is caused by endothelial or glycocalyx damage due to localization of HES on the endothelium, which is caused by the high shear viscosity of dilutional blood. Using a rat model, we compared blood coagulability measured by Sonoclot, levels of endothelial and glycocalyx damage markers and coagulation factors, and blood shear viscosity when hemodilution was performed with physiological saline (PS), 6% HES 130/0.4 in PS, and 10% HES 200/0.5 in PS. We also evaluated the localization rates of fluorescently labeled HES on endothelium in the isolated aorta. HES decreased the fibrin gel formation rate more than did PS. HES was shown to cover the endothelium, possibly due to its high shear viscosity, and this mechanism potentially acted to protect, rather than damage, the endothelium and glycocalyx. However, this covering effect may be the cause of coagulopathy due to inhibition of von Willebrand factor secretion from the endothelium.
Collapse
Affiliation(s)
- Ryu Azumaguchi
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yasuyuki Tokinaga
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Satoshi Kazuma
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Motonobu Kimizuka
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Kosuke Hamada
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomoe Sato
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
11
|
Qi F, Zhou H, Gu P, Tang ZH, Zhu BF, Chen JR, Zhang JS, Li F. Endothelial glycocalyx degradation is associated with early organ impairment in polytrauma patients. BMC Emerg Med 2021; 21:52. [PMID: 33879092 PMCID: PMC8056622 DOI: 10.1186/s12873-021-00446-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Endothelial glycocalyx (EG) abnormal degradation were widely found in critical illness. However, data of EG degradation in multiple traumas is limited. We performed a study to assess the EG degradation and the correlation between the degradation and organ functions in polytrauma patients. METHODS A prospective observational study was conducted to enroll health participants (control group) and polytrauma patients (trauma group) at a University affiliated hospital between Feb 2020 and Oct 2020. Syndecan1 (SDC1) and heparin sulfate (HS) were detected in serum sample of both groups. In trauma group, injury severity scores (ISS) and sequential organ failure assessments (SOFA) were calculated. Occurrences of acute kidney injury (AKI), trauma-induced coagulopathy (TIC) within 48 h and 28-day all-cause mortality in trauma group were recorded. Serum SDC1 and HS levels were compared between two groups. Correlations between SDC1/HS and the indicators of organ systems in the trauma group were analyzed. ROC analyses were performed to assess the predictive value of SDC1 and HS for AKI, TIC within 48 h, and 28-day mortality in trauma group. RESULTS There were 45 polytrauma patients and 15 healthy participants were collected, totally. SDC1 and HS were significantly higher in trauma group than in control group (69.39 [54.18-130.80] vs. 24.15 [13.89-32.36], 38.92 [30.47-67.96] vs. 15.55 [11.89-23.24], P < 0.001, respectively). Trauma group was divided into high degradation group and low degradation group according to SDC1 median. High degradation group had more severe ISS, SOFA scores, worse organ functions (respiratory, kidney, coagulation and metabolic system), and higher incidence of hypothermia, acidosis and shock. The area under the receiver operator characteristic curves (AUC) of SDC1 to predict AKI, TIC occurrence within 48 h and 28-day mortality were 0.838 (95%CI: 0.720-0.957), 0.700 (95%CI: 0.514-0.885) and 0.764 (95%CI: 0.543-0.984), respectively. CONCLUSIONS EG degradation was elevated significantly in polytrauma patients, and the degradation was correlated with impaired respiratory, kidney, coagulation and metabolic systems in early stage. Serum SDC1 is a valuable predictive indicator of early onset of AKI, TIC, and 28-day mortality in polytrauma patients.
Collapse
Affiliation(s)
- Feng Qi
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Hao Zhou
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Peng Gu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Zhi-He Tang
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Bao-Feng Zhu
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jian-Rong Chen
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jin-Song Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Feng Li
- Emergency Intensive Care Unit, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 Haier Xiang North Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Herrero Y, Jud Schefer R, Muri BM, Sigrist NE. Prevalence of Acute Traumatic Coagulopathy in Acutely Traumatized Dogs and Association with Clinical and Laboratory Parameters at Presentation. Vet Comp Orthop Traumatol 2021; 34:214-222. [PMID: 33434944 DOI: 10.1055/s-0040-1721707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to determine the prevalence of acute traumatic coagulopathy (ATC) and identify associated clinical and laboratory parameters including rotational thromboelastometry. STUDY DESIGN Dogs presenting within 6 hours after trauma were allocated to the ATC or non-ATC group based on thromboelastometry analysis (ex-tem S, in-tem S, fib-tem S). ATC was defined as ≥2 hypocoagulable parameters in 1 profile and ≥ 1 hypocoagulable parameter in an additional profile. Parameters used were ex-tem and in-tem clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), maximum lysis and fib-tem MCF. Clinical and laboratory parameters at presentation, animal trauma triage (ATT) score, transfusion requirement and outcome were compared. Logistic regression was used to identify independent factors associated with ATC. RESULTS Eleven of 33 dogs presented with ATC and showed ex-tem CT and CFT prolongation and reduced MCF amplitude in all profiles (all p < 0.001). pH (p = 0.043) and potassium concentration (p = 0.022) were significantly lower and bleeding (p = 0.027) and plasma transfusions (p = 0.001) more common in dogs with ATC. Time after trauma (p = 0.040) and Animal Trauma Triage score (p = 0.038, including haematocrit as confounding factor) were associated with the presence of ATC. CONCLUSION Acute traumatic coagulopathy is more common in traumatized dogs than previously reported. Acute traumatic coagulopathy was associated with acidosis, Animal trauma triage score, time after trauma and higher transfusion needs. Coagulation abnormalities include ex-tem CT and CFT prolongations and decreased clot strength.
Collapse
Affiliation(s)
- Yaiza Herrero
- Division of Emergency and Critical Care Medicine, Department of Small Animals, Vetsuisse Faculty of the University of Zurich, Switzerland
| | - Rahel Jud Schefer
- Division of Emergency and Critical Care Medicine, Department of Small Animals, Vetsuisse Faculty of the University of Zurich, Switzerland
| | - Benjamin M Muri
- Clinic for Small Animal Surgery, Department of Small Animals, Vetsuisse Faculty of the University of Zurich, Switzerland
| | - Nadja E Sigrist
- Division of Emergency and Critical Care Medicine, Department of Small Animals, Vetsuisse Faculty of the University of Zurich, Switzerland
| |
Collapse
|
13
|
Is Fresh Frozen Plasma Still Necessary for Management of Acute Traumatic Coagulopathy? CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00397-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Gaudette S, Hughes D, Boller M. The endothelial glycocalyx: Structure and function in health and critical illness. J Vet Emerg Crit Care (San Antonio) 2020; 30:117-134. [PMID: 32067360 DOI: 10.1111/vec.12925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To conduct a narrative review of the current literature in reference to the structure and function of the endothelial glycocalyx (EG) and its contribution to the pathophysiology of conditions relevant to the veterinary emergency and critical care clinician. Novel therapies for restoring or preserving the EG will also be discussed. DATA SOURCES Online databases (PubMed, CAB abstracts, Scopus) were searched between January 1st 2017 and May 1st 2017 for English language articles without publication date restriction. Keywords included EG, endothelial surface layer, degradation, syndecan-1, heparan sulfate, critical illness, sepsis, trauma, and therapeutics. DATA SYNTHESIS The EG is a complex and important structure located on the luminal surface of all blood vessels throughout the body. It plays an important role in normal vascular homeostasis including control of fluid exchange across the vascular barrier. Loss or degradation of the EG has an impact on inflammation, coagulation, and vascular permeability and tone. These changes are essential components in the pathophysiology of many conditions including sepsis and trauma. A substantial body of experimental animal and human clinical research over the last decade has demonstrated increased circulating concentrations of EG degradation products in these conditions. However, veterinary-specific research into the EG and critical illness is currently lacking. The utility of EG degradation products as diagnostic and prognostic tools continues to be investigated and new therapies to preserve or improve EG structure and function are under development. CONCLUSIONS The recognition of the presence of the EG has changed our understanding of transvascular fluid flux and the pathophysiology of many conditions of critical illness. The EG is an exciting target for novel therapeutics to improve morbidity and mortality in conditions such as sepsis and trauma.
Collapse
Affiliation(s)
- Sarah Gaudette
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Dez Hughes
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia.,Translational Research and Clinical Trials (TRACTS) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| | - Manuel Boller
- U-Vet Animal Hospital, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, 3030, Australia.,Translational Research and Clinical Trials (TRACTS) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, 3030, Australia
| |
Collapse
|
15
|
The protective effect of hydroxyethyl starch solution on the glycocalyx layer in an acute hemorrhage mouse model. J Anesth 2019; 34:36-46. [PMID: 31617003 PMCID: PMC6992552 DOI: 10.1007/s00540-019-02692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Fluid therapy focused on glycocalyx (GCX) protection in hemorrhagic shock is a current focus of research. Hydroxyethyl starch (HES) solution is commonly used for fluid resuscitation; however, its effects on the GCX remain unclear. The primary aim of this study was to explore the protective effect of HES130 in maintaining GCX thickness and reducing plasma syndecan-1 expression. METHODS An acute hemorrhage murine model with the dorsal skin chambers was used to measure GCX thickness and to evaluate vascular permeability. Groups of mice were treated with normal saline (NS), albumin (NS-A), HES130 (NS-V), or no exsanguination or infusion (C). We measured syndecan-1 plasma concentrations, performed blood gas analysis, and analyzed the 7-day cumulative mortality. RESULTS GCX thickness in NS mice was significantly reduced compared to that in group C, but no other groups showed a difference compared to group C. The plasma concentration of syndecan-1 was significantly higher in NS mice than in group C. There were no significant differences in the fluorescence intensity of dextran in the interstitial space. HES70 leakage was suppressed in NS-V mice compared to those in other groups. HES70 was localized to the inner vessel wall in C, NS, and NS-A mice, but not in group NS-V. Blood gas analysis indicated that pH and lactate showed the greatest improvements in NS-V mice. The 7-day cumulative mortality rate was the highest in group NS. CONCLUSION Resuscitation with HES130 protected the GCX and suppressed vascular permeability of HES70 during early stages of acute massive hemorrhage.
Collapse
|
16
|
Oller L, Dyer WB, Santamaría L, Largo C, Javidroozi M, Shander A. The effect of a novel intravenous fluid (Oxsealife®) on recovery from haemorrhagic shock in pigs. Anaesthesia 2019; 74:765-777. [DOI: 10.1111/anae.14627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - W. B. Dyer
- Australian Red Cross Blood Service and Faculty of Medicine and Health University of Sydney Sydney NSW Australia
| | - L. Santamaría
- Department of Anatomy, Histology, and Neuroscience School of Medicine Autonomous University of Madrid Madrid Spain
| | - C. Largo
- Department of Experimental Surgery IdiPAZ Hospital La Paz Madrid Spain
| | - M. Javidroozi
- TeamHealth Research Institute TeamHealth Englewood NJ USA
| | - A. Shander
- Departments of Anesthesiology Critical Care and Hyperbaric Medicine Englewood Hospital and Medical Center Englewood NJ USA
| |
Collapse
|
17
|
Gando S, Mayumi T, Ukai T. The roles of activated protein C in experimental trauma models. Chin J Traumatol 2018; 21:311-315. [PMID: 30594428 PMCID: PMC6354177 DOI: 10.1016/j.cjtee.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023] Open
Abstract
Trauma-induced coagulopathy is classified into primary and secondary coagulopathy, with the former elicited by trauma and traumatic shock itself and the latter being acquired coagulopathy induced by anemia, hypothermia, acidosis, and dilution. Primary coagulopathy consists of disseminated intravascular coagulation and acute coagulopathy of trauma shock (ACOTS). The pathophysiology of ACOTS is the suppression of thrombin generation and neutralization of plasminogen activator inhibitor-1 mediated by activated protein C that leads to hypocoagulation and hyperfibrinolysis in the circulation. This review tried to clarify the validity of activated protein C hypothesis that constitutes the main pathophysiology of the ACOTS in experimental trauma models.
Collapse
Affiliation(s)
- Satoshi Gando
- Acute and Critical Care Center, Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Japan,Corresponding author.
| | - Toshihiko Mayumi
- Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Tomohiko Ukai
- Department of Social Medicine, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
18
|
Glycocalyx Shedding is Enhanced by Age and Correlates with Increased Fluid Requirement in Patients with Major Burns. Shock 2018; 50:60-65. [DOI: 10.1097/shk.0000000000001028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
A clinically relevant and bias-controlled murine model to study acute traumatic coagulopathy. Sci Rep 2018; 8:5783. [PMID: 29636535 PMCID: PMC5893580 DOI: 10.1038/s41598-018-24225-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 03/20/2018] [Indexed: 12/30/2022] Open
Abstract
Acute traumatic coagulopathy (ATC) is an acute and endogenous mechanism triggered by the association of trauma and hemorrhage. Several animal models have been developed, but some major biases have not yet been identified. Our aim was to develop a robust and clinically relevant murine model to study this condition. Anesthetized adult Sprague Dawley rats were randomized into 4 groups: C, control; T, trauma; H, hemorrhage; TH, trauma and hemorrhage (n = 7 each). Trauma consisted of laparotomy associated with four-limb and splenic fractures. Clinical variables, ionograms, arterial and hemostasis blood tests were compared at 0 and 90 min. ATC and un-compensated shock were observed in group TH. In this group, the rise in prothrombin time and activated partial thromboplastin was 29 and 40%, respectively. Shock markers, compensation mechanisms and coagulation pathways were all consistent with human pathophysiology. The absence of confounding factors, such as trauma-related bleeding or dilution due to trans-capillary refill was verified. This ethic, cost effective and bias-controlled model reproduced the specific and endogenous mechanism of ATC and will allow to identify potential targets for therapeutics in case of trauma-related hemorrhage.
Collapse
|
20
|
Tonglet ML, Poplavsky JL, Seidel L, Minon JM, D’Orio V, Ghuysen A. Thromboelastometry in trauma care: a place in the 2018 Belgian health care system? Acta Clin Belg 2018; 73:244-250. [PMID: 29299962 DOI: 10.1080/17843286.2017.1422311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction Evidence supporting the use of Thromboelastography (TEG®) and rotational thromboelastometric (ROTEM®) in the trauma setting remains limited. We present the results of a practical evaluation of the potential interest of ROTEM® in the diagnosis of acute coagulopathy and the need for emergent blood product transfusion in the general trauma population of a non-trauma Belgian emergency department. Methods Extracting a convenience cohort from the initial prospective TICCS study, we performed a retrospective analysis to test the following hypothesis: ROTEM® might be helpful to discriminate trauma patients with or without acute coagulopathy. Fifty patients were included and ROTEM® results were compared to conventional coagulation tests results, blood transfusion need and outcome. Results With a negative predictive value of 97.6% and a positive predictive value of 42.9%, a strictly normal ROTEM® profile at the time of admission seems to be able to exclude the presence of acute coagulopathy. ROTEM® also seems to be accurate in identifying patients without the need for emergent blood product transfusions. Conclusion In a population of trauma patients of a Belgian general emergency department, a strictly normal coagulation profile evaluated by ROTEM® at hospital entry is associated with a normal coagulation profile evaluated by INR and fibrinogen levels and the absence of any indication of blood product transfusion. ROTEM® may be useful for preselection of trauma patients at risk for coagulopathy within the global trauma population. This, however, would need confirmation in further investigations. TRIAL REGISTRATION clinicaltrials.gov NCT02132208 Registered 6 May 2014.
Collapse
Affiliation(s)
- Martin Lucien Tonglet
- Emergency Department, Liege University Hospital, Domaine du Sart Tilman, Liège, Belgium
| | | | - Laurence Seidel
- Departement des biostatistiques, Domaine du Sarti Tilman, CHU du Sart Tilman, Liège, Belgium
| | - Jean Marc Minon
- Laboratory and blood transfusions departments, CHR de la Citadelle, Liège, Belgium
| | - Vincenzo D’Orio
- Emergency Department, Liege University Hospital, Domaine du Sart Tilman, Liège, Belgium
| | - Alexandre Ghuysen
- Emergency Department, Liege University Hospital, Domaine du Sart Tilman, Liège, Belgium
| |
Collapse
|
21
|
Giordano S, Spiezia L, Campello E, Simioni P. The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology. Intern Emerg Med 2017; 12:981-991. [PMID: 28477287 DOI: 10.1007/s11739-017-1674-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
The emergency management of acute severe bleeding in trauma patients has changed significantly in recent years. In particular, greater attention is now being devoted to a prompt assessment of coagulation alterations, which allows for immediate haemostatic resuscitation procedures when necessary. The importance of an early trauma-induced coagulopathy (TIC) diagnosis has led physicians to increase the efforts to better understand the pathophysiological alterations observed in the haemostatic system after traumatic injuries. As yet, the knowledge of TIC is not exhaustive, and further studies are needed. The aim of this review is to gather all the currently available data and information in an attempt to gain a better understanding of TIC. A comprehensive literature search was performed using MEDLINE database. The bibliographies of relevant articles were screened for additional publications. In major traumas, coagulopathic bleeding stems from a complex interplay among haemostatic and inflammatory systems, and is characterized by a multifactorial dysfunction. In the abundance of biochemical and pathophysiological changes occurring after trauma, it is possible to discern endogenously induced primary predisposing conditions and exogenously induced secondary predisposing conditions. TIC remains one of the most diagnostically and therapeutically challenging condition.
Collapse
Affiliation(s)
- Stefano Giordano
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.
| | - Luca Spiezia
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Elena Campello
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Paolo Simioni
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|