1
|
Li Y, Han M, Yang M, Su B. Hemoperfusion with the HA330/HA380 Cartridge in Intensive Care Settings: A State-Of-The-Art Review. Blood Purif 2024; 54:122-137. [PMID: 39571561 DOI: 10.1159/000542469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Hemoperfusion with the HA330/HA380 cartridge has markedly evolved during the past decade and has thus been widely used in intensive care settings to treat critical or hyperinflammatory illnesses. Numerous clinical studies have demonstrated that HA330/HA380 hemoperfusion might mitigate systemic inflammatory response syndrome and organ dysfunction in ICU patients by removing inflammatory mediators and metabolic toxins from the blood. However, there is currently lacking a systematic evaluation on the safety and efficacy of HA330/HA380 hemoperfusion in intensive care settings. SUMMARY We searched the PubMed database, Chinese Clinical Trial Registry, and ClinicalTrials.gov for articles published from inception to June 20, 2024 (updated on September 10, 2024) to perform a state-of-the-art review of HA330/HA380 hemoperfusion in daily critical care practice. We discuss the basic technique characteristics and ex vivo investigations of the HA330/HA380 cartridge and summarize the latest clinical evidence regarding the use of HA330/HA380 hemoperfusion for the treatment of sepsis, severe COVID-19, cardiac surgery, acute pancreatitis, liver failure, and blunt trauma. Ex vivo studies suggest that the HA330/HA380 cartridge demonstrates satisfactory biocompatibility and substantial adsorption capacity for inflammatory cytokines, such as interleukin-6, interleukin-10, and tumor necrosis factor-α. Small-scale clinical studies indicate that HA330/HA380 hemoperfusion may help reduce plasma levels of inflammatory mediators, alleviate organ dysfunction, and improve survival in some critically ill patients with sepsis, severe COVID-19, acute pancreatitis, and blunt trauma. KEY MESSAGES (i) The HA330/HA380 cartridge contains abundant, coated, biocompatible sorbent beads made of styrene-divinylbenzene copolymers. (ii) HA330/HA380 hemoperfusion, with or without combined continuous renal replacement therapy, is a promising treatment option for some critically ill patients by removing proinflammatory mediators and alleviating organ dysfunction. (iii) The HA330/HA380 cartridge may adversely adsorb antibiotics, and appropriate antibiotic dosing adjustment and plasma drug level monitoring is recommended. (iv) There are currently numerous ongoing clinical trials evaluating the safety and efficacy of HA330/HA380 hemoperfusion in critically ill patients who develop sepsis or undergo cardiopulmonary bypass, which will certainly sharpen our future practice of HA330/HA380 hemoperfusion in ICU.
Collapse
Affiliation(s)
- Yupei Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China,
| | - Mei Han
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Yang
- Department of Nephrology, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Juffermans NP, Gözden T, Brohi K, Davenport R, Acker JP, Reade MC, Maegele M, Neal MD, Spinella PC. Transforming research to improve therapies for trauma in the twenty-first century. Crit Care 2024; 28:45. [PMID: 38350971 PMCID: PMC10865682 DOI: 10.1186/s13054-024-04805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Improvements have been made in optimizing initial care of trauma patients, both in prehospital systems as well as in the emergency department, and these have also favorably affected longer term outcomes. However, as specific treatments for bleeding are largely lacking, many patients continue to die from hemorrhage. Also, major knowledge gaps remain on the impact of tissue injury on the host immune and coagulation response, which hampers the development of interventions to treat or prevent organ failure, thrombosis, infections or other complications of trauma. Thereby, trauma remains a challenge for intensivists. This review describes the most pressing research questions in trauma, as well as new approaches to trauma research, with the aim to bring improved therapies to the bedside within the twenty-first century.
Collapse
Affiliation(s)
- Nicole P Juffermans
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Tarik Gözden
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Ross Davenport
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Jason P Acker
- Canadian Blood Services, Innovation and Portfolio Management, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Michael C Reade
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Marc Maegele
- Department of Trauma and Orthopedic Surgery Cologne-Merheim Medical Center Institute of Research, Operative Medicine University Witten-Herdecke, Cologne, Germany
| | - Matthew D Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip C Spinella
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhang LM, Xin Y, Wu ZY, Song RX, Miao HT, Zheng WC, Li Y, Zhang DX, Zhao XC. STING mediates neuroinflammatory response by activating NLRP3-related pyroptosis in severe traumatic brain injury. J Neurochem 2022; 162:444-462. [PMID: 35892155 DOI: 10.1111/jnc.15678] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Long-term neurological deficits after severe traumatic brain injury (TBI), including cognitive dysfunction and emotional impairments, can significantly impair rehabilitation. Glial activation induced by inflammatory response is involved in the neurological deficits post-TBI. This study aimed to investigate the role of the stimulator of interferon genes (STING)-nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) signaling in a rodent model of severe TBI. Severe TBI models were established using weight-drop plus blood loss-reinfusion. Selective STING agonist ADU-S100 or antagonist C-176 was given as a single dose after modeling. Further, NLRP3 inhibitor MCC950 or activator nigericin, or caspase-1 inhibitor VX765, was given as an intracerebroventricular injection 30 min before modeling. After that, a novel object recognition test, open field test, force swimming test, western blot, and immunofluorescence assays were used to assess behavioral and pathological changes in severe TBI. Administration of C-176 alleviated TBI-induced cognitive dysfunction and emotional impairments, neuronal loss, and inflammatory activation of glia cells. However, the administration of STING agonist ADU-S100 exacerbated TBI-induced behavioral and pathological changes. In addition, STING activation exacerbated pyroptosis-associated neuroinflammation via promoting glial activation, as evidenced by increased cleaved caspase-1 and GSDMD N-terminal expression. In contrast, the administration of C-176 showed anti-pyroptotic effects. The neuroprotective effects of C-176 were partially reversed by the NLRP3 activator, nigericin. Collectively, glial STING is responsible for neuroinflammation post-TBI. However, pharmacologic inhibition of STING led to a remarkable improvement of neuroinflammation partly through suppressing NLRP3 signaling. The STING-NLRP3 signaling is a potential therapeutic target in TBI-induced neurological dysfunction.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.,Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Balança B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz AC. DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview. Int J Mol Sci 2021; 22:ijms22052439. [PMID: 33670976 PMCID: PMC7957733 DOI: 10.3390/ijms22052439] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products (RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs and RAGE at the acute phase of brain injury. We searched the MEDLINE database for “DAMPs” or “RAGE” or “S100B” and “traumatic brain injury” or “subarachnoid hemorrhage” or “stroke”. We selected original articles reporting data on acute brain injury pathophysiology, from which we describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in the development of brain injury. We will also discuss the clinical strategies that emerge from this overview in terms of biomarkers and therapeutic perspectives
Collapse
Affiliation(s)
- Baptiste Balança
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
- Correspondence: ; Tel.: +33-6-2391-0594
| | - Laurent Desmurs
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
| | - Jérémy Grelier
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
| | - Armand Perret-Liaudet
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
- Team BIORAN, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
| | - Anne-Claire Lukaszewicz
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France;
| |
Collapse
|
5
|
Muller CR, Courelli V, Lucas A, Williams AT, Li JB, Dos Santos F, Cuddington CT, Moses SR, Palmer AF, Kistler EB, Cabrales P. Resuscitation from hemorrhagic shock after traumatic brain injury with polymerized hemoglobin. Sci Rep 2021; 11:2509. [PMID: 33510204 PMCID: PMC7843604 DOI: 10.1038/s41598-021-81717-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) is often accompanied by hemorrhage, and treatment of hemorrhagic shock (HS) after TBI is particularly challenging because the two therapeutic treatment strategies for TBI and HS often conflict. Ischemia/reperfusion injury from HS resuscitation can be exaggerated by TBI-induced loss of autoregulation. In HS resuscitation, the goal is to restore lost blood volume, while in the treatment of TBI the priority is focused on maintenance of adequate cerebral perfusion pressure and avoidance of secondary bleeding. In this study, we investigate the responses to resuscitation from severe HS after TBI in rats, using fresh blood, polymerized human hemoglobin (PolyhHb), and lactated Ringer's (LR). Rats were subjected to TBI by pneumatic controlled cortical impact. Shortly after TBI, HS was induced by blood withdrawal to reduce mean arterial pressure (MAP) to 35-40 mmHg for 90 min before resuscitation. Resuscitation fluids were delivered to restore MAP to ~ 65 mmHg and animals were monitored for 120 min. Increased systolic blood pressure variability (SBPV) confirmed TBI-induced loss of autoregulation. MAP after resuscitation was significantly higher in the blood and PolyhHb groups compared to the LR group. Furthermore, blood and PolyhHb restored diastolic pressure, while this remained depressed for the LR group, indicating a loss of vascular tone. Lactate increased in all groups during HS, and only returned to baseline level in the blood reperfused group. The PolyhHb group possessed lower SBPV compared to LR and blood groups. Finally, sympathetic nervous system (SNS) modulation was higher for the LR group and lower for the PolyhHb group compared to the blood group after reperfusion. In conclusion, our results suggest that PolyhHb could be an alternative to blood for resuscitation from HS after TBI when blood is not available, assuming additional testing demonstrate similar favorable results. PolyhHb restored hemodynamics and oxygen delivery, without the logistical constraints of refrigerated blood.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Vasiliki Courelli
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alfredo Lucas
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Joyce B Li
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Fernando Dos Santos
- Department of Anesthesiology and Critical Care, University of California San Diego, San Diego, CA, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Moses
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Erik B Kistler
- Department of Anesthesiology and Critical Care, University of California San Diego, San Diego, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA.
| |
Collapse
|
6
|
Li Y, Zhang LM, Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP. CORM-3 ameliorates neurodegeneration in the amygdala and improves depression- and anxiety-like behavior in a rat model of combined traumatic brain injury and hemorrhagic shock. Neurochem Int 2020; 140:104842. [PMID: 32858089 DOI: 10.1016/j.neuint.2020.104842] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Emotional disturbances characterized by depression and anxiety among survivors of traumatic brain injury (TBI) impact the quality of life severely. Currently, there is a lack of effective drug treatment for neurodegeneration induced by TBI, mainly due to failed efficacy of compounds such as corticosteroids, calcium channel blockers, and excitatory amino acid inhibitors. Thus, we sought to continue with our investigation on CORM-3, a water-soluble exogenous carbon monoxide-releasing molecule with excellent anti-inflammatory actions employed in a previous study using a rat model of combined TBI with hemorrhage shock and resuscitation (HSR). METHODS Rats were administrated with CORM-3 after induction of TBI and HSR and examined depressive and anxiety-like behaviors, along with cerebral function employing functional magnetic resonance imaging (MRI) 30-days post-trauma. Also, the following variables were measured: 1) neuronal pyroptosis and apoptosis 24 h post-trauma, 2) the roles of PKG-ERK1/2 signaling pathways with the use of the protein kinase G (PKG) specific inhibitor, KT5823. RESULTS CORM-3-treated rats displayed significant ameliorated depression- and anxiety-like behaviors, improved cerebral blood flow, and fractional anisotropy (FA), showed less neuronal pyroptosis and apoptosis in the amygdala, and upregulated the phosphorylation of Vasodilator-stimulated phosphoprotein (VASP) and ERK1/2. However, CORM-3 neuroprotective effects against trauma were only partially reversed by KT5823. CONCLUSION CORM-3 ameliorated the emotional deficits and neuronal death induced in the amygdala post-TBI and HSR rat model, and PKG-ERK1/2 signaling might be implicated in the underlying mechanism.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
7
|
Shan L, Sun Y, Shan F, Li L, Xu ZP. Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. J Mater Chem B 2020; 8:878-894. [PMID: 31956883 DOI: 10.1039/c9tb02515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous blood purification technology such as hemodiafiltration has been used worldwide for saving patients suffering from severe diseases or organ function failure, especially in the intensive care unit and emergency setting. The filters as core devices are commonly made of polymer materials as hollow fiber membranes. However, the membrane is often inductively blocked by blood clot formation due to its interactions with blood components. Heparin is the anticoagulant often used in clinical practice for anti-coagulation. Recently, heparin is also employed to modify the hollow fiber membranes either chemically or physically to improve the filtration performance. This review summarizes recent advances in methodology for surface heparinization of such hollow fiber membranes, and their filtration performance improvement. The review also provides expert opinions for further research in this rapidly expanding field.
Collapse
Affiliation(s)
- Liang Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Yunbo Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|